

Table of Contents

	Colophon

	Foreword

	1. Introduction

	1.1. Welcome

	1.1.1. Prerequisites

	1.2. Supporting the author

	1.3. Book version

	1.4. Copyright and license

	1.4.1. Copy this book

	1.4.2. Copy this book’s code, too

	1.5. Disclaimer

	1.6. Style

	2. Background

	2.1. Who am I?

	2.2. Why did I write this book?

	2.3. What’s with the title?

	2.3.1. Steadfast Self-Hosting

	2.3.2. Rapid-Rise Personal Cloud

	2.4. Who is this for?

	2.5. What is this book not?

	2.6. How write book?

	2.6.1. When write book?

	2.6.2. Where?

	2.6.3. Hey now.

	2.7. A note on FOSS

	3. Your journey

	3.1. Why you should self-host

	3.2. Why you should not self-host

	4. Practical examples

	4.1. Criminal chickens

	4.2. Photo search by location

	4.3. Surprises

	4.3.1. Good surprises

	4.3.2. Bad surprises

	4.3.3. Absorb them all

	5. Plan

	5.1. Budget

	5.2. Resources

	5.3. Schedule

	5.4. Transition

	5.5. Sysadmin mindset

	6. System design

	6.1. Service stack

	6.2. Digital security

	6.2.1. Categorize your data

	6.2.2. WAN access

	6.2.3. Threat model

	6.2.4. Example: WAN access

	6.2.5. VPN

	6.2.6. Full-disk encryption

	6.2.7. More tips

	6.3. Filesystem

	6.4. Operating system

	6.4.1. Customizations

	6.5. Contained services

	6.6. Reverse Proxy

	6.6.1. Traefik architecture

	7. Implementation

	7.1. Service plan

	7.1.1. Choose services

	7.1.2. Map services to resources

	7.2. Prepare hardware

	7.2.1. Server

	7.2.2. Admin computer

	7.2.3. Test devices

	7.2.4. Hard drives

	7.2.5. Networking

	7.2.6. Electricity

	7.2.7. Physical security

	7.3. OS install

	7.3.1. ZFS setup

	7.4. Server maintenance

	7.4.1. Hardware failure

	7.4.2. Software updates

	7.4.3. Monitoring

	7.4.4. Backups

	8. mario

	8.1. mario philosophy

	8.2. SSH setup

	8.3. Provision server

	8.4. Server domain name

	8.4.1. Public DNS

	8.4.2. Dynamic DNS

	8.4.3. Internal DNS

	8.5. Start services

	8.5.1. Start reverse proxy

	8.5.2. Start other services

	8.6. Encryption certificates

	8.7. Tiny test service

	9. Services

	9.1. Nextcloud: file sync and share

	9.1.1. Quick start

	9.1.2. Maintenance notes

	9.1.3. Issues

	9.2. Jellyfin: stream audio and video

	9.2.1. Quick start

	9.2.2. Maintenance notes

	9.2.3. Issues

	9.2.4. Manage Jellyfin media with Nextcloud

	9.3. Wallabag: save and read articles

	9.3.1. Quick start

	9.3.2. Maintenance notes

	9.3.3. Issues

	9.4. Watchtower: service updater

	9.4.1. Quick start

	9.4.2. Maintenance notes

	9.4.3. Issues

	9.5. Scratch: visual programming

	9.5.1. Quick start

	9.5.2. Maintenance notes

	10. What’s next?

	10.1. Learn more

	10.2. Use a GPU

	10.3. AI

	10.4. Pi-hole

	10.5. Single sign-on

	10.6. Enforce SSH public key auth

	10.7. Allow WAN access

	10.8. More about Nextcloud

	10.8.1. Basic install

	10.8.2. Object storage

	10.8.3. Security

	10.8.4. Detailed setup

	10.8.5. More maintenance tips

	10.8.6. Performance

	10.8.7. Customization

	10.8.8. Full text search

	10.8.9. Mobile

	10.8.10. Nextcloud vs. ownCloud

	10.8.11. Nextcloud Office

	10.8.12. Various issues

	10.8.13. End-to-End Encryption

	10.8.14. AIO installer

	11. More resources

	11.1. Support

	11.2. Alternatives to mario

	12. Discussion topics

	13. Exercises

	Afterword

	Acknowledgments

	Glossary

	Cross references

	Figures

	Tables

	Sidebars

	Code snippets

Colophon

 Steadfast Self-Hosting: Rapid-Rise Personal Cloud

©2024 Adam Monsen.
Some rights reserved.
This book is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License.

[image: cc by sa]

The beautiful cover art was created by my daughter using Krita.
You’ll find more of her excellent work throughout the book.

Technical editing by Lenny Wondra.

First published in 2024 by Sunrise Data Press.

Seattle, Washington, USA.

EPUB ISBN: 979-8-9908615-0-3

[image: Sunrise Data logo] Sunrise Data Press

Foreword

 Before I started working in open source in 2006, I was working as a community organizer in Massachusetts. I was very well acquainted with how a lack of access to information or not having the “real” instruction manual keeps people from having a say in how they live their lives. As a community organizer, I taught people to lobby.
Our organization invited people to work with legislators to draft laws that would address their needs and make their lives better.
We taught people to fundraise and we taught them how to organize themselves and their neighbors.
And then everything started to move online and important conversations about how we should protect the vulnerable and empower the next generation started happening through our computers.

You can either lament progress or embrace it.
I chose to embrace it and decided that I wanted to empower people and help them feel a sense of control over the way they use computers and technology.
I started meeting all kinds of people from the free software movement, some were really interested in the way the code worked and others, like Adam, were the most interested in how freely available code could help people.

We met in 2009 at LFNW (LinuxFest Northwest), a free community conference in Bellingham, Washington.
A mutual friend had suggested that I should check out Seattle sometime when visiting Washington state for LFNW, which meant carpooling from Seattle to Bellingham.
We’d all meet for lunch in Seattle and then do the two hour car ride up to Bellingham together.
Those car rides are when we all really started talking about the lack of a free software event in Seattle.
We realized we needed some folks in Seattle who could get their companies to sponsor (like Adam and Rob Smith) and someone who could help get some speakers and promote the event to the free software community, which is how I (as a Massachusetts resident) ended up co-founding an annual Seattle event.

[image: seagl crew]

Figure 1. Early SeaGL crew. From left to right: Salt, Deb, Patch (with french fry), Adam, Rob. Not pictured: Chris, Jesse, Bri, Lisa, and many more.

SeaGL kicked off in 2013 at Seattle Central College and it was pretty scrappy.
No keynotes, lots of shared power strips and a few friends that had gotten roped in to help without a lot of idea of what they’d signed up for.
We had chosen a Friday to possibly attract students while the campus was open and a Saturday to make the second day easy for people whose jobs wouldn’t support their attendance during the work week.
The event was and remains both free to attend and open to everyone.

Adam showed up to our first event with a small pile of “print on demand” hats and shirts with our brand new logo (a seagull of course.)
Talk selection was, “if you want to do a talk, do a talk.” Adam gave some great intro talks on Git and Hadoop and I gave a policy talk and community organizing talk.
We hadn’t written it down yet, but SeaGL was destined to become a conference for beginners and experts, for coders and policy nerds and for talks about the ecosystem; the flaws, the potential and the opportunities for partnership with other efforts to empower people.

After that chaotic first edition, we solidified that we wanted SeaGL to be for everyone, but especially for people who were looking for a way into open source in the diverse, expensive, and tech-heavy Seattle area.
We wanted SeaGL to be a great first tech conference for attendees and a welcoming platform for aspiring speakers.
We later extended this to working towards finding lesser known speakers and offering them their first keynote opportunity.
The whole SeaGL crew (including Adam of course!) have always been passionate about welcoming in newcomers and fastidious about hosting a friendly, safe and curiosity positive environment.

Adam and I have known each other for a long time.
I’ve met his daughter, who is the talented illustrator for this book, and his wife who is also smart and relentlessly curious about how technology affects our lives.
I’ve even met some of the chickens, who are indeed squeaky clean, although sadly not all that smart.
Luckily, they are extremely well cared for so they don’t need to be too bright.

In brief, Adam is very dedicated to both free software and empowering people.
He is also very, very nice!
Like truly one of the nicest people I have ever met.
If the idea of doing something hard with a patient and gentle mentor is appealing to you and you are curious about self-hosting, then this is the book for you.

Self-hosting is hard.
I’ve personally lurked on mailing lists that were going to make this easy, gone to talks, watched videos and read articles, but they’ve never quite managed to make it easy.
Some of those resources were starting at chapter 2, others were full of comments that made me feel like any random person of reasonable intelligence should be able to find the information that wasn’t included.
Fortunately, Adam has included everything that a true beginner needs to get started while giving the reader plenty of options.

Self-hosting is also important.
Things change quickly in tech and in the wider world.
What you control and what you don’t is constantly shifting.
Self-hosting gives you a chance to keep a few things to yourself and be in charge of your personal data, your media and the way you interact with your computing environment.
Self-hosting lets you decide what your needs are and choose how to address them, without asking for permission or getting locked into a contractual relationship with a company that doesn’t care about you as an individual.

You should read this book, share it with other people, and maybe, once you’re ready, contribute back to the self-hosting community.

Welcome to the world of hosting,

Deb Nicholson

Founder, Seattle GNU/Linux Conference

Executive Director, Python Software Foundation

1. Introduction

Data sovereignty means having full control of your data.
It brings the promise of privacy, liberty, and longevity.
Realizing data sovereignty is both fun and practical, and supports prosocial behavior.
Self-hosting (running your own server) is an excellent path to data sovereignty.

This book will help you efficiently learn and practice self-hosting.
You’ll gain confidence facing its challenges while enjoying its benefits first-hand.
The skills you will build are applicable at home, at work, and in your community.

1.1. Welcome

 I am so glad you’re here!

I’d like to help you get a server up and running.
The self-hosting ecosystem is crowded and confusing, so I’ve taken care of a number of difficult choices with sensible, tested defaults.
I’ll help you provision (set up) your own server and a few useful web services.
Bring along whatever sysadmin experience you’ve got, some willing users, and a desire to gain self-hosting competency.

The Internet is often a relentless cash-grab and attention vampire.
Our actions are infinitely measured; we are the product.
The smog of surveillance stifles our freedom and erodes trust.
We will:

	
Not settle for cheap cloud services.

	
Reduce distractions.

	
Cherish our attention, time, and freedom.

	
Breathe the crisp, clear air of reduced surveillance by providing our own alternative to the chilling popular default of trading privacy for convenience.

	
Save money by efficiently running lots of services on our own hardware with negligible incremental cost.

	
Do well by our friends, families, and social groups.

	
Do things we can’t do with public services because we have full access to all our own raw data.

	
Adapt and grow as software evolves, taking our data and metadata along with us.

	
Share what and when it makes sense to share with whom we trust.

This is the book I wish I’d had when I was struggling to provide a safe online experience for my kids.

New self-hosters can use this book to get started.
Experienced self-hosters can compare my choices to theirs.

1.1.1. Prerequisites

 To get the most out of this book, the sysadmin experience you bring along should include the ability to configure your router and LAN (local area network), install Linux on a computer (hereafter referred to as your server), connect to your server with SSH (secure shell), edit text files and run commands on your server, and transfer files to and from your server.

If you’re unfamiliar with any of these concepts, a quick trip to your favorite search engine or local user group should yield enough pointers to get started.

I recommend hosting on bare metal (tangible nearby computer hardware), and this comes with some prerequisites for the physical space where your server resides.
Read more about the ins and outs of bare metal in Section 7.2, “Prepare hardware”.

Finally, some best practices to keep in mind as you read along:

Document everything you do, if only for your future self.
Recruit and train help, leveraging said documentation to share knowledge.
Focus, take breaks, be patient, and take care of your body.
Ask for help and ask for feedback.
Listen to users, gather data, and adapt accordingly.

1.2. Supporting the author

 I wrote this book with my own resources after years of research with lots of help from awesome people.
See Acknowledgments (near the end of the book).

Please buy a copy for yourself or someone else, especially if you’d like me to write more books in the future.

1.3. Book version

 This book was generated on Tue Jun 25 06:28:11 AM PDT 2024 with LANG set to en_US.UTF-8 from source steadfast.asciidoc at commit b2c3959, branch main, tag 1.3.1, on Ubuntu 22.04.4 LTS.

1.4. Copyright and license

 Steadfast Self-Hosting: Rapid-Rise Personal Cloud is ©2024 Adam Monsen.
Some rights reserved.

1.4.1. Copy this book

 This book is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License.

[image: cc by sa]

You are free to…​

	
Share

	
copy and redistribute the material in any medium or format

	
Adapt

	
remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms…​

	
Attribution

	
 You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

	
ShareAlike

	
If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

	
No additional restrictions

	
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Notices

 You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

No warranties are given.
The license may not give you all of the permissions necessary for your intended use.
For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

1.4.2. Copy this book’s code, too

 See Chapter 11, More resources for how to get the source code.
It includes two original works for you to copy, modify, and share.
First, the book itself, along with code to generate beautifully typeset versions.
Second, a learning tool called mario (see Chapter 8, mario).

The license for all original source code related to this book is the GNU AGPL (Affero General Public License) as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
A copy of the AGPL is included in mario/COPYING.

1.5. Disclaimer

 I offer no warranty and no guarantee.
Buying or reading this text is not an agreement for support.

While every precaution has been taken in the preparation of this book, I assume no responsibility for errors or omissions or for damages resulting from the use of its code or contents.

I am not professionally affiliated with the products or paid for by the companies mentioned in this book.
Their copyrights, trademarks and intellectual property are their own.

My opinions are my own.

I include direct references to many products and companies and add my specific, hard-won lessons on their comparative strengths and weaknesses.
My intent is to educate and inform.

I will take shortcuts.
I will not seek to deeply and exhaustively explore each topic.
I want you to get to the good stuff quickly, then decide if, when, and where you want to dive deeper.

If you find contradictions to these statements, please let me know.

I’m human and error-prone.
I’ll make it easy to contact me about missing or incorrect information and to improve it yourself if you choose.
Please do!
See Chapter 11, More resources for contact information and how to share improvements.

1.6. Style

 Text formatting:

Table 1. Typographical conventions

	Styled example
	Used for

	zpool status -t

	Inline command, filename, username, password, or variable.
Longer snippets of console text use language-specific syntax highlighting.

	Ctrl+c

	Key(s) pressed on the keyboard.

	example.com

	Bare (un-named) link.
https scheme is assumed and omitted.

	Example domain

	Named link.
Full URL appears in print version.

	https://cloud.example.com

	Non-working example link.
Replace .example.com with your actual domain name.

	Chapter 6, System design

	Cross-reference to another section or chapter.

Admonitions:

Admonitions like this note draw your attention to auxiliary information.

Here’s a tip,

something of import,

a cautionary message, and

a specific warning.

Sidebars:

Stand-alone or supplemental content may be visually separated using a sidebar like this one.
Sidebars may or may not have titles.

Code snippets:

Listing 1. Example code snippet (🚀 server)
 echo foo | sed s/foo/bar/

Snippet titles may indicate where the code should be be run.
If the location is omitted, one or more intended runtime environments will be explained in context.
“🚀 server” indicates this particular example Bash script snippet is intended to be run on your server.

2. Background

 You might be thinking, “this looks like a lot of background!”
And you’d be right.

I go deep into background here because of something I found while giving talks about self-hosting: people know how to learn and discern, they wish for meaningful motivation to commit to learning.

I hope you find that here.

2.1. Who am I?

 I’m a dad, tech entrepreneur, and FOSS (free and open source software) enthusiast.
I love to parent, care, laugh, sing, listen, code, build, produce, debug, architect, debug, lead, manage, debug some more, lecture, and write.
I’m good at administering and securing systems and processes while ensuring privacy, compliance, and reliability.

I’m most proud of my family, growing Mifos, founding SeaGL, selling C-SATS, and writing this book.

I’ve been running my own services for decades.
I started with a blog and photo album running on a buddy’s machine.
The feeling of freedom and control was exciting and it complemented my effec­tiveness at work, so I kept on, running
many of my own services, although rarely on my own hardware.

Once I had a family, our data storage and capability needs increased.
A simple network drive and file sync were no longer enough.
We were all stuck at home and online at the start of the pandemic, and I was wary of companies swooping in to capitalize on our captivity.
I started dabbling more with self-hosting at home and found it suprisingly easy, useful, and fun.
I wanted more services for managing our data and I enjoyed the autonomy of our own bare metal.

Around the same time, I decided to de-Google (stop using Google).
The family needs and my de-Googling coincided well.
Self-hosting was a serendipitous fit.
Just trying to de-Google was a fascinating and fulfilling journey, punctuated with many self-hosting experiments.

2.2. Why did I write this book?

 I wrote this book to promote data sovereignty as a prosocial behavior.
This is easier to achieve than ever before with self-hosting, and I wanted to share that in book form.
Existing books lack a good, fast, and cheap technique for self-hosting on bare metal.
I figured one out and I think you’ll love it.
It works fine if you run your server in the cloud too, it just costs a lot more (see Section 7.2.1, “Server”).

Also, learning is fun.
I learn when I write.
While learning how my phone works, it struck me how important it is to understand how “the cloud” works, since the modern phone experience relies heavily on services and data in public clouds.
In trying to make my phone “my own” (do what I want to help me live my best life), I was inspired to host my own data in my own cloud.

Also, most tech folks I know self-host something, likely something I’ve never heard of.
There’s always another self-hosted service to try out, learn about, improve, and share.

Also, I wanted to write the book I wish I had when I started self-hosting.

Also, so there’s a book about this.
There are countless videos, articles, and chunks of code online for doing everything in this book and more.
Many are excellent.
This book is your to keep, hold, and refer back to as you try, test, and learn.

Also, there’s a stark gap between useful individual computers and useful cloud services.
It’s easy to pay for cloud, but the true price is obscured: surveillance, lock-in, inflexibility.

Also, I can picture a future where owning a truly privacy-respecting home data appliance becomes as commonplace as owning a refrigerator.
Creating this appliance has been attempted many times and it’ll be attempted again.
Until it succeeds and sticks, self-hosting—​setting up a server and services for yourself and others—​is a great way to go.

2.3. What’s with the title?

2.3.1. Steadfast Self-Hosting

 I like the word steadfast.
It reminds me of reliable things and people.

The key to reliable self-hosting is data sovereignty.
Software will change, services will change, you will change and the world will change.
You’ve got to have control of your data if you want it to reliably serve you well through all that change.

It does make a difference to have your own copy.
You might lose access to something you “bought” because you were actually renting it.
It might even change right under your nose.
More on this:

	
PlayStation To Delete A Ton Of TV Shows Users Already Paid For by Ethan Gach

	
What is DRM? by the Free Software Foundation

	
It’s Their Content, You’re Just Licensing it by Reggie Ugwu

Saving copies of data someone else is hosting for you is fine.
Self-hosting goes a step beyond, giving you far-reaching control of how your data are used and shared.
You’ll gain agency over authoritative copies of your files, allowing you to know and control your source of truth.
All this with reliability and flexibility within a reasonable budget.

Self-hosting means providing computing services by and for individuals, families, and hobbyists in SOHO (small office / home office) environments.

“Small community hosting” is perhaps a more accurate and appropriate term here.
You’re reading the right book to host services for a small community.

Last, a note on terminology.
When it comes to compilers in computer science (and perhaps also other areas in tech), “self-hosting” refers to the wonderfully satisfying milestone when a programming language is able to compile itself.
I apologize to my friends in related disciplines for blatantly overloading the term “self-hosting” to mean small community hosting.
You had it first, I’m borrowing it and hoping our contextual lane lines will sufficiently prevent collisions.

2.3.2. Rapid-Rise Personal Cloud

 Rapid is there to get you excited to jump right in and learn.
Rapid does not mean reckless!
I’m a strong advocate of a thoughtful and robust approach to self-hosting.
When you encounter a challenge, slow down to learn faster.
Once you understand a concept, practice it.
Fail fast and often, with rapid iterations trending towards perfection.

Rapid-rise is something you might find on a package of baker’s yeast, and I love fresh-baked bread.
If your server is a loaf of bread, this book is your rapid-rise yeast.

[image: bread server]

Figure 2. Server in the shape of a loaf of bread.

Cloud implies scalable and automatable.
Personal scopes that scalability to what’s reasonable for a small group.
A bare metal server can scale (to a degree) within its box.
It can scale automatically by using more or less power according to compute demand, and manually when you upgrade hardware components (say, adding another hard drive).

I’ll also admit my inner child enjoys multiple meanings of the phrase Personal Cloud.

2.4. Who is this for?

 This book is for people who are kind to others, brave in trying new things, curious about the possibilities of self-hosting, and either uncertain how to do so or eager to improve their existing homelab (self-hosting setup).

This book is for people who want to know where their data live, and to be able to work all kinds of magic with it.
It’s a “from scratch” or “the hard way” approach, and it keeps the doors wide open to many possibilities with a principled self-hosting technique.
I’ll sometimes recount what worked for me rather than specifically recommend what you should do.

This book is for people curious about or already biased towards FOSS.
And—​as much as I’ll blather on about FOSS—​I’m not here to judge.
I’m here to grow, primarily by sharing and learning.

This book is for students, especially tech-savvy or tech-adjacent students active in clubs and teams.

This book provides motivation for self-hosting with an excellent process for learning same.
Its version-specific material is expected to fall out of date.
Its motivation and process for learning will become more relevant as time passes.

This book is for those trying to live more for others and less for themselves; selfishly enjoying the act of being selfless.
Leaders, parents/guardians, members of a collective or a handful of friends.
People who want to self host, who also love others and doing other things besides systems administration.
I’ll save you some precious time for those other things while making the sysadmin bits fun.

Similar to “small community hosting”, Small Group Cloud would be more accurate title words than Personal Cloud.
“Small group” is a great target size for what you’ll create.
I wouldn’t bother doing all this just for yourself.

This book is for people into (or hoping to get into) self-hosting.
It is geared towards useful, secure, and quick setup of a single bare metal server with many services.

This book is for people who want to de-Google, de-iTunes, de-OneDrive, de-Dropbox, de-Whatever.

2.5. What is this book not?

 This is not a comprehensive guide to self-hosting.
I won’t attempt to enumerate the endless ways to mix and match hardware, operating systems, isolation techniques, and services.
This book is for small scale.
Look elsewhere for:

	
high availability

	
enterprise security

	
N + 1 redundancy

	
managing many machines

	
clustering

	
single sign-on

	
advanced monitoring and metrics centralization

	
regulatory compliance

	
intrusion/threat detection/prevention

	
in-depth security hardening

	
running your own container registry

	
100% offline / off-the-grid self-hosting

There are some topics like these I’ll skip or cover only briefly.
Any one of these topics is an entire industry, another piece of hardware, a setting on your home router, a potential career, none or all of the above, and otherwise well worth further consideration.
You can and should be aware of them.
If you feel I’ve completely omitted proper detail about something critically relevant to my method of self-hosting, please let me know.

This book is not for the heavily-resourced already-done-thats.
If you have $50k and unlimited time to spend on your concrete bunker homelab…​ well then, may I have a tour?
I would love to see that.
If you are more curious than certain you may still enjoy learning from my choices.

I’m not writing to accommodate hardline software patent and license activists.
These wonderful folks will spot my intentional use of the word open and omission of the word libre.
I love all these words, I agree words are important, and I stand on the side of inclusion at the cost of idealism (while maintaining hope these concepts are not mutually exclusive).
I thank the activists for helping swing the needle towards freedom, to all our benefit.

This book is not a manifesto for always/only self-hosting.
It’s fine to self-host some services and pay for others.
You’ll come up with your own checklist for what to self-host and when.
Mine focuses on providing a useful, reliable, future-proof cloud for me and my family.

This book is not the fastest path to trying out web services.
You can usually find demo instances running for particular projects.
There are cloud providers that will run a service for you and host your data.

See also: Section 11.2, “Alternatives to mario”.

2.6. How write book?

 Why are you talking like a caveman?

I wrote the book originally in Markdown plain text in my steadfast text editor, Vim.

I applied generous amounts of Pandoc, time, and love.
Pandoc is a fantastic FOSS tool which allowed me to use that single plain text file with fairly human-readable Markdown syntax to generate several different decent outputs.
While revising, I came across the build system for Pro Git 2 (thank you Scott and Ben!).
In short order I converted the book to AsciiDoc and ported my typsetting code to Asciidoctor.
This simplified the book build and gave me more and better output formats.

Check out the source code—​you’re welcome to hack away at it.
See Chapter 11, More resources.

I tried to stick with off-the-shelf FOSS software as much as possible, with minimal customization.
This helped me focus on the content while keeping the book simple enough to self-publish.

2.6.1. When write book?

 Still with the caveman.
Enough already.
I wrote this in 2023.
And, listen, even blessed cave-dwellers like us should give self-hosting a shot.
We got this!

2.6.2. Where?

 Seattle.

2.6.3. Hey now.

 Admittedly, those last few sections exist so I could cover all 5 Ws and include the caveman gimmick.

2.7. A note on FOSS

I prefer FOSS over non-FOSS.
This can be a polarizing topic.
Heck, even using the term FOSS instead of the other variants can be polarizing.
These are just distractions.
Today we need compromise, patience, and kindness.
Curiosity over certainty.

Here’s my promise to you, dear Reader:

I will try not to get too preachy.

I will prioritize practical solutions over idealistic ones.
I will sometimes fail to do this when it comes to FOSS.
Most notably, I will barely acknowledge the existence of non-FOSS alternatives in this book.

I’m aware of the tension between practical and idealistic solutions, and I believe this tension is a Good Thing because it reminds us to think critically about what cloud services we should pay for and use, not just what we can pay for and use.
It’s worth a moment’s thought.

Our data matter and our personal choices matter.
The impact spreads to the groups you are a part of, as does the opportunity for improvement.

I believe self-hosting FOSS is doable and affords many practical benefits over non-FOSS.

Hang in there and give me some feedback.
You’ll strike your own balance between idealism and practicality and I’m interested to know where you land.

3. Your journey

 Continuing advances in hardware and software means self-hosting today is easier and cheaper than ever before.
And in one key way, much more complex: there are an overwhelming number of choices to be made for someone starting out on this journey.

Hang in there.
I’ll help you narrow the choices by providing specific, focused guidance.

Don’t worry too much about the specific choices you make.
Your personal cloud will be malleable.
Swap out bits as you like.
If you choose poorly, just choose again (ideally based on metrics and user needs).

You aren’t a failure if you don’t get it right the first time.

It is OK to slowly migrate from whatever you currently use.
No need to upset everything all at once.

It is OK to not migrate at all and just follow this book to expand your own personal learning and experimentation.

It is OK if you don’t adhere perfectly to your or someone else’s ideals.
Stick to your values while you question and develop these values.
Enjoy your journey.

3.1. Why you should self-host

 Ask again—​as you should—​why the heck would anyone self-host software services?
So many reasons!

	
Flexibility

	
run only the services you and your users want

	
use multiple services backed by the same data storage

	
automate what you want, when you want

	
unlimited sharing

	
unlimited streaming

	
unlimited choices

	
Fun!

	
learn and grow

	
self-hosting is a doable challenge

	
solve right-sized puzzles as you learn and improve

	
be part of the thriving self-hosting community

	
Be future-proof

	
insulate your users from the unpredictable shifting of proprietary product prices, service offerings, and UI/UX

	
share your hard-earned data to your friends and family, forever

	
migrate to something else easily if and when you need to (for example, using a newer/better photo server once one becomes available)

	
it’s really the data that must be safeguarded, the frontends to those data (file viewers, editors, etc) will change when you choose

	
Democratize computing

	
self-hosted software (especially FOSS) enables data and computational autonomy

	
Conserve electricity

	
backend cloud power per device drops dramatically with a few users

	
save even more power the more users you add

	
see linked articles in Section 7.2.1, “Server”

	
Save money

	
self-hosted hardware will typically beat cloud (renting someone else’s)

	
savings increase as your users’ data storage requirements enter the terabyte range

	
save more with every service you run

	
avoid unexpected public cloud costs

	
egress fees make it expensive to download your data and move it somewhere else

	
forgetting to shut down a VM (virtual machine) can get expensive quickly

	
you could spend excessive time and money navigating the public cloud’s confusing menu of service offerings

	
avoid unexpected public clouds changes

	
changes in license fees

	
changes in usage fees

	
changes in support costs

	
changes in service offerings

	
near-zero incremental cost of adding users and services

	
Speed / Save time

	
a nearby server can have much better response times, assuming reasonable hardware and well-behaved services

	
nearby data (“data locality”) means you don’t need round-trips to someone else’s data center to run experiments

	
shared storage allows you to front your data with multiple services, choosing read-write/read-only access sensibly

	
Avoid vendor lock-in

	
you’ll be able to use software features public cloud providers don’t offer or don’t yet exist because you fully own and control your raw data

	
when you buy something with DRM, you don’t really own it

	
is there an integration you count on?
Sometimes a service stops working with another service.
This happens less often with FOSS because anyone can simply fork (copy, modify, and share) a project.

	
Privacy

	
avoid the chilling effect of mass surveillance

	
with a personal cloud you can safely and confidently keep GPS latitude and longitude in your photo metadata

	
once you keep your location metadata, you can do creative things with it

	
if you don’t need to share your location and behavior with Google every second, why do you?

	
remove yourself from the equation of user analysis data—​when you stream video from someone else’s service, they know and analyze every time you (or your kids) (re-)watch a video you “own”, every time you rewind, fast-forward, pause…​ but do they need to? why?

	
Unlock new possibilities

	
apply arbitrary workflows to uploaded files

	
deploy trustworthy, offline generative AI (artificial intelligence) models

	
enjoy features that don’t exist in public services

3.2. Why you should not self-host

 Self-hosting is more complex and time-consuming than paying for the same functionality, especially at first.
It takes discipline and patience, like learning a new instrument (but this instrument eventually plays itself!).

If something breaks, you’re fixing it.
Sometimes you get a useful error, sometimes you can search the web for a quick fix.
Sometimes you don’t and can’t.

If you don’t enjoy troubleshooting and debugging, self-hosting might not be for you.

If you don’t take care with backups and security, you’ll risk time, energy, and trust with people you care about.

On-premise self-hosting entails additional meatspace-specific considerations.
You need to ensure sufficient power, connectivity, HVAC (heating, ventilation, and air conditioning), and security.
Just don’t keep your server outside.

4. Practical examples

 I use lots of software during my daily routine.
I’ll need to look something up, get a ride, buy food, and so on.
Much of this software is, sadly, quite annoying!
It always seems to want more of my time, attention, and money, when I only want the practical outcome it purports to help me achieve.
As a result I trust it less and constantly think of how I might replace it with something I like and trust more.

Here are a couple examples where I’ve improved on a public service with something self-hosted, followed by some surprises I encountered along the way.

4.1. Criminal chickens

 My family has a homemade chicken safety system and the videos are important to me.
I used to just plop them on YouTube because hey, it’s free and it “just works”, right?

Except when it doesn’t.
YouTube sometimes felt my chickens were being spammy, deceptive, and/or scammy.

[image: YT censor]

Figure 3. Screenshot of an email from YouTube content team having removed my chicken coop camera video.

For the record, our chickens are squeaky clean.

[image: squeaky clean chicken]

Figure 4. One absolutely upstanding, hard-working, law-abiding chicken.

Once I stood up my personal cloud I felt freedom and ease when posting and hosting these videos.
I no longer needed to complete any YouTube paperwork to be able to keep an eye on my chickens.
I can safely ignore their audit and its erroneous policy violation claim.

[image: YT audit]

Figure 5. Screenshot of a YouTube legal audit for my old API client.

I also no longer need to work with YouTube’s API (application programming interface), including registering an API client and completing periodic audits.
After standing up Nextcloud I deleted my YouTube API client to upload videos, cleaning up my code and simplifying its maintenance.
Turns out the Nextcloud Talk API is easier for posting my chicken coop photos and videos anyway.

With my own cloud I’m also able to tune quotas and rate limits as desired.
Full speed ahead!

4.2. Photo search by location

 Here’s one more pro-personal-cloud example.
This one worked because I am comfortable storing location metadata in my self-hosted photos.

A while back I was trying to find some particular photos from a pile of thousands, taking up terabytes on disk.
I knew where I was when I took the photos (within 10 miles or so) and my photos have embedded locations.
I couldn’t remember when they were taken.

My photos are just a bunch of JPEG files.
I examined them with a small Python program I wrote.
I looked for any photos taken within 10 miles of the point I knew.
The key was being able to access the data directly and quickly.

This is just one (likely outdated) example.
By the time you read this you may be able to query your photos with a sentence like: “show me all photos taken within 10 miles of Mexico City”, and it’ll just work.

Then you can move on to saving the world.
Just make sure you’ve got your data!

4.3. Surprises

 Should you choose to proceed: godspeed, traveler.
This is seriously fun stuff.

You may be surprised by how fast and easy some things are with self-hosting.
I’d love to know how this goes for you.

You may also be surprised by how time-consuming and difficult some things are.
Maybe you’ll get held up with hardware (and its power, wires, cooling, failures).
Maybe networking.
Maybe “change management” (trying to convince your users to use Nextcloud instead of Dropbox).

Here are some things that surprised me, both positively and negatively.

4.3.1. Good surprises

Hardware wasn’t that hard

 With help from a friend (thanks Rob!), I bought a reliable and cheap refurbished server.
I thought I’d be tinkering with wires, cards, and CMOS batteries.
Not so!
I opened the chassis to see the guts.
I confirmed the contents were normal server guts, or close enough.
The CPUs and memory sticks were all there as advertised.

I plugged it in; it worked.

[image: inside chassis]

Figure 6. View inside the server showing two empty PCI-E card slots.

Containers == happy

I was pleasantly surprised by containers (explained in Section 6.5, “Contained services”) following my varied earlier experiences with VMs.
VMs are simple at first because they behave much like physical hardware.
Installing Linux into a VM is as easy as installing it onto bare metal (sometimes even easier).
Then you can set up one or more services in the VM.
The real rub here is with maintenance; maintaining a VM can be as complex as maintaining a bare metal server.

Containers take a different approach and simulate much less of a bare metal server.
They are fast and small compared with VMs, allowing higher non-conflicting service density.
That is, you can stand up more services per server and they don’t interfere with one another (e.g. by requiring different versions of PHP (PHP: Hypertext Processor)).
One container typically contains only one service.

Isolation of containers is limited compared to VMs.
The kernel (the part of the OS that talks directly with the underlying hardware) is shared, for example.
Limited isolation keeps the resource and maintenance costs of container-based isolation low compared with VMs.

Containers are excellent for a consistent and resilient personal cloud.
They are easy to declare (in code), build, deploy, test, and repeat.
They can also be used along with VMs: you might use a VM as your server instead of bare metal.

I chose Docker to manage containers because it is popular and I have experience with it.
Your server is also considered a host since it it is a host to Docker containers.

One downside of Docker is how often root access is assumed in example code and popular public images.
Running as root makes containers simpler but less secure.

Go paperless with OCR

 Another smile-worthy advancement is free OCR (optical character recognition).
I keep trying to “go paperless” by scanning in all my paper files.
After scanning papers I am shouldered with, unsurprisingly, a bunch of PDFs of images.

These can be easily OCR’d and managed with tools like Paperless-ngx and Nextcloud Full text search.

Jellyfin works well

 Jellyfin is a personal streaming media server.
I was stoked to see how Jellyfin showed up as an excellent and complete FOSS alternative to Plex.

4.3.2. Bad surprises

Traefik learning curve

 The Traefik reverse proxy was surprisingly challenging to set up because my networking fundamentals were rusty.
I’ve got it working reliably and I still need to keep improving my fundamental knowledge in networking.

See Section 6.6, “Reverse Proxy” for more about Traefik.

Nextcloud bugs

I was frustrated with some bugs in Nextcloud.
These felt like the most urgent since I rely heavily on it.

Community support is hit or miss.
Nextcloud seems more popular outside the USA.

Not all Nextcloud apps are ready for prime time.
See Section 10.8.7, “Customization”.

Jitsi and ports

 Jitsi is a self-hostable FOSS video call platform.
I gave up trying to get Jitsi running in Docker.
I recall lots of open ports or port ranges being a problem.
This service might be easier to self-host in a virtual machine.

There’s also a workaround assigning port ranges to specific IP addresses, but this is beyond the scope of this book.
I will eventually give it another shot because logging in is now required when using the free 8x8-hosted Jitsi service.

4.3.3. Absorb them all

 When it comes to surprises, try to absorb the bad ones when they affect your users.
Ideally before they affect your users, via research, planning, and testing you’re likely already doing.

Dogfood what you self-host.
Try your best to ensure everything is attractive and useful, then wait.
Be patient.
Never try to force people to use whatever you self-host.

I hope this book inspires you with many positive surprises and helps you and your users avoid many negative ones.

5. Plan

 We’ll now briefly cover the salient points of a self-hosting plan.
I love this part!
I get excited about what’s to come, and I know a solid plan makes a vision real.

Make your plan.
Maintain and improve your plan along with your server.
Share the plan with other admins.

Yes, other admins.
You need someone to cover for you when you are not available, or a crystal clear expectation that when you die, the server dies too.

5.1. Budget

 Consider the time and cost of self-hosting.
To yourself and your users.
How much do you have and want to spend?
Write down a number and stick to it.

5.2. Resources

 Sketch out your thoughts on resources you’ll need.
Some ideas:

	
Compute and memory

	
CPU and RAM are the fundamental resources necessary for computation.
See Section 7.1.2, “Map services to resources” for ideas on how to estimate requirements based on the services you’ll host.
GPU workloads are not covered in this book, although Chapter 10, What’s next?, and Chapter 13, Exercises touch on a few things you might try on your own.

	
Data storage

	
Estimate how much storage space you’ll need.
There’s a significant jump in complexity and cost with each jump in unit (for example, GB (gigabyte) to TB (terabyte)).
This book is appropriate for data storage up to about 10 TB.
See Section 7.2.4, “Hard drives” for how to spend less on storage by self-hosting.

	
Electricity

	
Check your home power bill for the cost per kWh and run some estimates.
See Section 7.2.1, “Server” for an example of the power used by a capable server.

	
Support

	
Who will help you when you get stuck?
Section 11.1, “Support” has some ideas.

	
Physical location

	
Where will the server live?
Will you have to install new wiring for power or network?
Section 7.2.5, “Networking” covers my home setup.

5.3. Schedule

 Rough out key dates so you and your users can plan ahead.
For example:

	
Apr 28

	
Brainstorm, plan.

	
Apr 30

	
Order hardware.

	
May 3

	
Pull ethernet from router into garage.

	
May 5

	
Set up server: Install hard drives, power on, install OS, start services.

	
Jun 9

	
Review result against original goals.

Invite others to participate, starting at the beginning when you brainstorm and plan.
This is a great time to include other people who may help care for the server.

5.4. Transition

Your users already have their data somewhere else.
Consider how you’ll help them migrate their data onto the server.

The key to this is excellent communication.
Include this in your plan and seek buy-in since migration cost is a reality for every transition.

To learn more about gracefully transitioning users between systems, study change management.

5.5. Sysadmin mindset

The server exists for the users.
It is important to establish the right mindset to be able to provide an excellent user experience.

Make sure your self-hosted services work well for your users.
Solicit their input often and take it seriously.
Carefully tease out their wants vs. their needs.

Translate the word “users” as necessary.
Perhaps: “those most dear to you, those you care about most above all others, those who give you meaning and purpose.”
Yeah, that’s way over the top.
You get the point: we must be thoughtful about what users experience or it will be frustrating for everyone.

Ideally you already know your users in real life.
Stay connected with them in real life to better support them online.

6. System design

 Let’s dive into the design of a Steadfast system.

6.1. Service stack

 A Steadfast system presents nicely as a simplified stack of colored boxes.
The vertical ordering of the stack is based on where and how frequently a sysadmin will likely act and investigate at that layer when supporting or troubleshooting (most frequently at top), and amount abstracted from bare metal (least at bottom).

[image: service stack]

Figure 7. Layers of a Steadfast system. From the bottom, hardware: bare metal, filesystem: ext4 for / and optionally ZFS for /data, OS: Ubuntu LTS 64-bit server, container runtime: Docker, containers: Nextcloud file sharing app, Jellyfin media server, Wallabag article reader.

I am most often working around the top layers e.g. adding or updating a container.
Less often I am updating OS (operating system) packages.
Less often still I might examine versions of a configuration file stored on disk from its ZFS automatic snapshots.
Finally, when my server dies, I’ll be on that bottom layer fixing or replacing hardware.
Here’s where to look for details on each layer:

	
services in containers:

	
Section 9.1, “Nextcloud: file sync and share”

	
Section 9.2, “Jellyfin: stream audio and video”

	
Section 9.3, “Wallabag: save and read articles”

	
container runtime:

	
Section 4.3.1.2, “Containers == happy”

	
Section 6.5, “Contained services”

	
OS: Section 6.4, “Operating system”

	
filesystem: Section 6.3, “Filesystem”

	
hardware: Section 7.2.1, “Server”

There are also two services in containers covered later and not pictured in the diagram:

	
Section 9.4, “Watchtower: service updater”

	
Section 9.5, “Scratch: visual programming”

6.2. Digital security

 Let’s cover the basic tools for understanding and securing your server.

6.2.1. Categorize your data

 First, consider your data.
It helps to break it down into two common categories:

Sensitive data

 Examples: passwords, credit card numbers, government ID numbers.
Recommendations:

	
Store offline only if possible.

	
If ever saved on a computer, store encrypted.

	
Easy fix: store in a password manager.

Everything else

 Examples: notes, photos, documents, personal information.
Recommendations:

	
Store on encrypted media, including backups.

	
Access only with up-to-date software you trust.

	
Disallow WAN (wide area network) access to these data.

6.2.2. WAN access

Once you’ve categorized your data, think about how people will get to it.
At home you can generally just connect directly to your server.
When you’re away or you’re trying to share with someone else, you’re talking WAN access.

WAN access is—​informally—​remote access to services and data running in your LAN.
One means of allowing WAN access to a service is by port forwarding HTTPS traffic through your router/firewall.
Port forwarding without taking additional security measures is both risky and convenient.

Consider alternatives to port forwarding, such as using a VPN.

6.2.3. Threat model

Let’s back up a step and talk about threat modeling.
Your threat model is how you’ll consider threats to your data and how you’ll mitigate these threats.
With your threat model in mind, you’ll be able to gain confidence in, for example, the decision of whether or not you should permit WAN access.

If you already know you are a valuable target (public figure, high net worth, wartime journalist, responsible for a server with information about many people), buckle up for a longer journey.
This guide is not sufficient for your threat model.

Let’s build a simple example threat model for the “everything else” data class.
Consider:

	
Assets

	
Data you are trying to protect.

	
Actors/Threats/Vectors

	
 People and bots acting badly, and their means of attack.
Includes mistakes and bugs.

	
Mitigations

	
Steps taken to reduce chances attacks succeed.

Put it all together and you get my 100% marketing-friendly threat model acronym A.A/T/V.M. (all punctuation is vocalized).
Really just rolls off the tongue!

6.2.4. Example: WAN access

 Test WAN access with this threat model.

	
Assets

	
Files with personal information stored in out-of-date service (e.g. an old, vulnerable version of Nextcloud).

	
Actors/Threats/Vectors

	
 Bot scrapes websites and finds URL to service on a public mailing list archive.
Bot automatically attempts exploit against known vulnerability in service.
Exploit succeeds, bot owner gains access to compute resources and personal information.

	
Mitigations

	
 Keep service up to date.
Secure WAN boundary: monitor traffic logs, employ an IPS (intrusion prevention system), only cross into LAN using a VPN (virtual private network).
Close WAN boundary: disallow all inbound WAN access.

Should you choose to expose a service, these mitigations will help secure it.
“Avoid public mailing lists” is not listed in mitigations as it only obscures the URL to the out-of-date service, and one shouldn’t rely on “security through obscurity”.

Mitigating at multiple layers (OS firewall, service, WAN boundary) demonstrates “defense in depth”, a common and worthwhile security practice.

6.2.5. VPN

 A VPN can secure your WAN boundary by only allowing authenticated users and adding a layer of encryption.
You can safely teleport back into your LAN while you are remote.

If all your users are able to use a VPN, you can keep ports closed for HTTP/S traffic and instead only allow VPN traffic.
Assuming your VPN server is well-configured and up to date, this is an excellent way to reduce your attack surface.

VPN technology enjoyed a major upgrade with Wireguard.
From a user perspective there’s no heavyweight login process, as with older VPNs.
Wireguard is fast, easy, and secure.

6.2.6. Full-disk encryption

Encrypting prevents data recovery by an attacker.
You’ll have to enter a password on boot, though.
This is inconvenient if you have intermittent power and/or no remote management capability.
There’s also the reasonable argument that full-disk encryption offers little for an always-on server: during normal operation you’ve already supplied the decryption key.

If you decide you want full-disk encryption, choose it during Section 7.3, “OS install”.
Review the material earlier in this chapter if you want help with your decision.

6.2.7. More tips

Self-hoster security tips

	
Maintain useful encrypted backups.
Perform test restores to prove they are useful.
See Section 7.4.4, “Backups”.

	
Avoid running commands as the root user.

	
Use multi-factor authentication.

	
Use firewalls.

	
Use strong passwords.

	
Be very careful when port forwarding or don’t do it at all.

	
Be vigilant about all the usual stuff too: phishing, malware, SMS spoofing, and social attacks.

	
Take caution with email links and attachments.

	
Don’t install untrusted software.
Always use HTTPS.

	
Use a special passphrase with your mobile carrier as an extra layer of authentication.

	
Question urgency and suspicious requests.

	
Send unrecognized calls to voicemail.

	
Pay attention to data breaches and protect your identity.

	
Freeze your credit after a breach.

	
Learn about compartmentalization and the principle of least privilege.

Further reading:

	
Personal Cybersecurity: How to Avoid and Recover from Cybercrime by Marvin Waschke

	
Personal Privacy Threat Modeling (With LOTS Of Examples) by Eliza

	
How I learned to stop worrying (mostly) and love my threat model by Sean Gallagher

6.3. Filesystem

I recommend (and will demonstrate) starting with one ext4 filesystem and, optionally, one ZFS filesystem.
ext4 is the stable, simple, and default filesystem for Ubuntu.
ZFS (originally: Zettabyte File System) provides encryption, lightweight snapshots and RAID (redundant array of inexpensive disks).

You may optionally use ZFS for storage (/data) on your server following Section 7.3.1, “ZFS setup”.
For the root (/) partition, I recommend using ext4 instead of ZFS to:

	
stick as closely as possible to the default Ubuntu install

	
avoid Docker filesystem clutter

	
when /var/lib/docker is on ZFS, many Docker-related filesystems are created, cluttering up zfs list a bit

	
avoid taking ZFS snapshots of the OS, since

	
we don’t need to

	
the OS will live outside ZFS folders

	
we won’t modify the OS—​changes will be managed upstream (e.g. during package updates or via mario)

Docker volumes (persistent container data) will be on ZFS.
The container's filesystem—​everything besides mounted volumes with persistent data—​is ephemeral and stored on ext4 in /var/lib/docker.
To learn more about ZFS, see:

	
Bitrot and atomic COWs: Inside “next-gen” filesystems by Jim Salter

	
ZFS 101—Understanding ZFS storage and performance by Jim Salter

	
ZFS (Debian wiki page) by various authors

Other ZFS concepts worth learning about: fragmentation, ARC (adaptive replacement cache), resilvering, scrubbing, ashift, and recordsize.

6.4. Operating system

Linux is a popular and reasonable choice for self-hosting.
I recommend a 64-bit Ubuntu Linux server with at least 2GB memory and 30GB storage.
Ubuntu LTS (long-term support) releases are the most stable and I recommend them.
Steadfast specifically mentions 24.04, the LTS release from April 2024.
24.04 is stable today, and will receive updates until April 2034, promising many more years of stability until Steadfast must be revised.
Installing the OS is generally quick and painless, see Section 7.3, “OS install”.

6.4.1. Customizations

 It’s good practice to minimize and carefully track customizations to the operating system from a default install.
This eases maintenance, including eventual re-installs.
Not mucking about on the server takes discipline, especially for old-school hands-on sysadmins like me.

Try to avoid SSH’ing into the server and making one-off changes.
You’ll learn how to instead modify mario’s configuration files and re-provision the server in Chapter 8, mario.

You can and should still SSH into the server, but when you do, try to only run read-only or exceptional read-write commands.
I often do something manually, undo it, then do the same thing with mario to confirm results are as expected.

Example read-only server-side operations:

	
show per-container resource usage: sudo docker stats

	
follow container log messages: sudo docker compose logs -f (run this in a folder containing a compose.yml file)

	
check server health: date; tail /proc/pressure/*

Example read-write server-side operations:

	
upgrade OS packages: sudo apt full-upgrade

	
change permissions for a folder: chmod 0700 ~/bin/

Start a “monthly maintenance” checklist like the one found in Section 7.4, “Server maintenance”.
Include these read-write operations in your checklist.
Whenever possible, use mario to perform read-write operations.

Always use sudo to run privileged commands instead of logging in as root.
This ensures every command is captured in /var/log/auth.log along with when it was executed, and by whom.

Upgrades may be automated.
This is appropriate once you have sufficient scale (along with trust and control of the source of the upgrades).
I usually do OS upgrades manually because I manage few systems so the burden is minimal and infrequent, and upgrading a package may require testing or manual intervention (e.g. rebooting).
These reasons are similar to the reasons I install the OS itself by hand.

My OS is more a pet than cattle (see “cattle vs. pets” in Glossary).
Perhaps it is a pet phoenix.
When it dies, it will be relatively easy to revive from the ashes.
It is backed up, there are few manual steps to perform, and all the manual steps are carefully documented.

6.5. Contained services

 mario uses Docker to run services in containers.
Docker is but one of many valid choices for how to isolate and run services.
VMs are also often used for this purpose.
See Section 4.3.1.2, “Containers == happy” for a comparison of the two.
If you’re interested in VMs (instead of or in addition to containers), check out Proxmox.

Kubernetes also works well for running services.
Try Kubernetes (especially one of the interesting micro-versions) if you are more familiar or interested in that.
I found it to be overkill.
If I needed high availability via clustering I’d be more likely to use Kubernetes.
If one computer in a Kubernetes cluster breaks, services can automatically migrate to working hardware in the cluster.
Regardless of your tech choices, set a clear expectation to your users as to how long your server might be down when something breaks.

Docker balances features and usability well, making it easy to run one service in isolation.
Docker Compose adds the ability to define and run the groups of processes necessary to support a whole service (e.g. a web server and its database).
Kubernetes can do this too, along with everything you don’t need to learn unless you are building out an entire virtual data center.
Docker Compose is a good fit for a single-server setup.

It is also good to avoid intermingling services and their dependencies along with everything else on the server’s primary storage.
Having everything on one filesystem is easy at first, for one service.
It gets more complicated the more services you add.

Many of the desperate self-hoster support requests I see in FOSS communities are about incompatibilities between this or that version of PHP or relational database between two different services.
Docker mitigates this by bundling dependencies.
Each Docker image is basically a complete filesystem (sans kernel), so a service’s image would always include the correct PHP version.
Another image would be used to create the database, if/as necessary.

It’s worth lingering on bundled dependencies for a minute.
If dependencies are clothes, a Docker container is a strong and cheap suitcase with all the clothes you need for a week’s travel.
You check your suitcase and board the train, then rest easy knowing your suitcase is tucked neatly, separately, next to all the others.
Docker containers are suitcases while the old way is everyones’ unfolded clothes in a giant pile in the caboose.

Containers are created from images.
An image is the blueprint to magic a fresh new suitcase (container) into existence, all packed and ready with the right clothes for your trip.
An image is built once, stamped with an identifier, and shared, where it can act as the basis for countless consistently-behaving containers.

Images are defined by a file named Dockerfile.
The Dockerfile should be tracked in source control.
Since mario uses Docker Compose, another important file is compose.yml.
Each service will have its own compose.yml file.
These should be kept in source control too.
For sysadmins these conventions provide reproducible images and containers.
For users: predictable, reliable services.

Practice treating containers as temporary things.
You’ll gain confidence in your system by creating and destroying them frequently, and you’ll enjoy the speed and ease of doing so.
Think:

	
ephemeral

	
containers are temporary

	
temporary containers provide robust, reproducible services

	
cattle, not pets

	
hand-managed VMs are burdensome pets

	
apologies to the cattle—​in this analogy they are expendable

	
stateless

	
persistent data can and must be defined explicitly

	
phoenix server

	
a term by Kornelis Sietsma describing repeated server destruction and re-creation

6.6. Reverse Proxy

 A reverse proxy sits in front of containers and directs traffic to the right service based on arbitrary rules.

Say you’ve purchased the domain example.com and want to host Nextcloud at cloud.example.com and Jellyfin at jellyfin.example.com.
Your sever uses a reverse proxy and a single IP address to direct incoming traffic to each of these services based on the hostname.

mario uses Traefik for its reverse proxy.

6.6.1. Traefik architecture

 Here’s a bit about how Traefik works and how it works with Nextcloud and other self-hosted web services.

We want HTTPS requests to port 443 bound for cloud.example.com to reach the Nextcloud service.
Study the included Traefik architecture diagram to better understand this process along with the mario sources.

[image: traefik architecture]

Figure 8. Traefik architecture diagram showing how a request reaches a service. From the MIT-licensed Traefik source code. Credit to Peka for the gopher logo, licensed CC-BY-3.0.

In the mario source code (or the snippets appearing later), look at the compose.yml files for Traefik and Nextcloud, which include:

	
the websecure entrypoint, where we accept HTTPS traffic on port 443

	
the app service definition for Nextcloud, which includes Traefik routing labels

	
the Host(…​) rule in the nc-https router

The symbols app, websecure, and nc-https are arbitrary.
I used short names to keep them from wrapping across lines.
You may wish to use longer, more descriptive names.

The routing labels wire together the entrypoint and router with the service under which they are defined.
That is: websecure to nc-https to app.

These two snippets of the mario source show how we set up Traefik for Nextcloud.

Listing 2. Traefik configuration snippet (🏠 admin computer)
 # from traefik/compose.yml
services:
 reverse-proxy:
 command:
 - --entrypoints.websecure.address=:443 ①

	① Define entrypoint websecure on the reverse-proxy service, accepting traffic over port 443.

Listing 3. Nextcloud configuration snippet (🏠 admin computer)
 # from nextcloud/compose.yml
services:
 app:
 labels:
 - "traefik.http.routers.nc-https.entrypoints=websecure" ①
 - "traefik.http.routers.nc-https.rule=Host(`cloud.example.com`)" ②

	① Connect the websecure entrypoint with the nc-https router on the app service.

	② Use the hostname rule with the nc-https router.

Each self-hosted service will have its own router.
Other web services will also use the websecure entrypoint.

HTTPS encryption is configured using other labels on the Traefik container.
See Section 8.6, “Encryption certificates” for details.

7. Implementation

 Now we’re ready to stand up the first three layers in Section 6.1, “Service stack”: Hardware, filesystem, and OS.
I’ll start by providing tools to evaluate services, then continue to OS installation and server maintenance.

7.1. Service plan

 Services are long-running software programs on your server.
Some have an interface, some run in the background on a schedule.
“Web services” are the ones you can connect to using a web browser or other tool speaking HTTP.

7.1.1. Choose services

 Start by reviewing your earlier needs and plans and use the material below to guide your decisions on which services you’ll run.
You may also skip ahead to Section 7.2, “Prepare hardware” to continue on the path of using the services mario installs by default, then return to this section when you’re considering other services to add.

Good for self-hosting

 You’ll find some services are better choices to self-host than others.
The good ones will likely share at least some of these traits.

Traits of Good Self-Hosted Services

	
Easy to install and self-hosting instructions exist.

	
Works with your preferred deployment method, e.g. has a popular and well-maintained Docker image, has instructions for integrating with Docker Compose and Traefik.

	
Community uses tools such as moderated chats, forums, news, mailing lists, and meetups.

	
Recent source code activity: releases, contributions, news.

	
Uses a FOSS software license.

	
Transparent about owners and sponsors.

	
Public roadmap, issue tracking, continuous integration, working demo, build scripts, bug/security bounties.

	
If you experience a problem you’re able to easily find more information about it (e.g. existing issue in tracker, workarounds) by searching the web.

	
Well-organized, elegant code.

	
Useful and up-to-date documentation.

	
Mentions and compares itself with other similar services.

	
Well-documented, useful, and complete API.

	
Flexible and extensible (easy to customize and extend with plugins and such).

See also: Checklist: Self-Hosting Solution Viability in Section 11.2, “Alternatives to mario”.

These traits are based on standard industry practice as well as my personal values and preferences.
Your own list may differ if, for example, you don’t prefer FOSS licensing or do prefer a particular programming language.

Bad for self-hosting

 Here are some indications a self-hosted service might be one to avoid.

Traits of Bad Self-Hosted Services

	
Unpopular, inactive, or poorly maintained.

	
Few maintainers / contributors.

	
Maintainers are inattentive to contributors.

	
Includes telemetry (phones home, collects statistics or usage data), especially without your consent and/or enabled by default.

	
Has known security vulnerabilities.

	
Confusing or opaque governance, roadmap, licensing, source control, contribution intake, issue tracking.

	
Sprawling complexity.

	
Difficult to fork.

	
Only geared towards enterprise: self-hosting instructions are complex or missing entirely.

	
Frequent annoying upsells/nags.

	
Intentional vendor lock-in.

	
Depends on closed/proprietary standards/services.

	
Open core.

I’m going to pick on Nextcloud here a bit.
Nextcloud has far more good traits than bad, but these are still worth mentioning.

First, their apparently non-FOSS build script.
Nick’s explanation for this makes sense: it is more convenient for them to hardcode secrets directly in the build script and keep the whole thing secret.
But hardcoded secrets are bad practice, it may be an AGPL license violation to hide a build script, and it makes forking harder.
It’s good practice to visualize succession, to be prepared for an eventual fork and change of ownership.
Nextcloud is a fork of ownCloud, after all (see Section 10.8.10, “Nextcloud vs. ownCloud”).

Second, sprawling complexity.
“Nextcloud” is not one thing, it is a collection of many software projects and services under various degrees of control by a single company.
This complexity makes forking costly and time-consuming.
Even switching between extant forks (say, migrating back to ownCloud from Nextcloud) may be complex.
They are clearly not trying to lock in customers, but the complexity itself may ultimately have that effect.

7.1.2. Map services to resources

 Here’s an early, rough resource planning table I used.
You can use this pattern to estimate your own resource needs.
I go into detail about a few of these services later in the book.

Table 2. Example tally of services to hardware resources

	Service
	Purpose
	Isolation
	Cores
	RAM

	jellyfin

	stream music

	Docker

	2

	2 GB

	kahoot-clone

	quiz game

	Docker

	0

	0 GB

	poller

	polls

	Docker

	0

	0 GB

	backuppc

	backups

	none

	0

	0 GB

	taskd

	task tracking

	Docker

	0

	0 GB

	sftp

	file transfers

	none

	0

	0 GB

	syncthing

	file sync

	none

	1

	1 GB

	nextcloud

	file sharing

	Docker

	2

	2 GB

	minetest

	game server

	Docker

	4

	8 GB

	irssi

	chat client

	none

	0

	0 GB

	jitsi

	video calls

	Docker

	2

	2 GB

	wallabag

	article saver

	Docker

	1

	1 GB

“Cores” represents relative peak compute requirements.
RAM: peak memory.
These were rough estimates based on published documentation.
The estimates turned out to be accurate enough.
I could see right quick I’d need something more powerful than the latest available Raspberry Pi.
See Section 7.2.1, “Server” for more lessons learned about resource requirements.

7.2. Prepare hardware

 It’s called hardware because these problems are hard.
That’s fun to say and, in my experience, false.
While there is a learning curve for understanding basic computer hardware components and hardware can certainly fail, there are plenty of wonderfully positive aspects of hardware. For example:

	
Hardware is tangible and behaves consistently.

	
Just plug it in, turn it on, and it’ll probably work.

	
When it does work, it is quite satisfying.

7.2.1. Server

 You’ll need a server.

You can always pay for “compute” in someone else’s cloud, but it’ll end up costing more in the long run.

If you’re in a hurry, you can start with pretty much any old desktop or laptop, or your own VM running on either.
Use something more powerful and expandable than a Raspberry Pi, though.
What if your users love it?
How will you increase storage?
What about bursty workloads?
If you start with something too small you won’t have enough speed nor expandability.

I’ve worked with quite a few different servers and I did my homework for this self-hosting adventure, so I had a decent idea of what I wanted.
I chose something powerful, cheap, and fast with plenty of storage and room to grow.
I sought professional commodity hardware for its replace-ability.
It can handle a reasonable amount of bursty compute needs, including building Docker images, flurries of user activity, and some generative AI (even without a GPU).

I found a used refurbished 1U rackmount server on eBay for about $1,000.
This is sometimes called “off-lease enterprise hardware”.
A 1U server is one rack unit tall, like a long pizza box.
Tech companies dump these by the truckload so you can usually find a good deal.
Mine has two 24-core CPUs and 128 GB RAM.

[image: racked server]

Figure 9. DIY rackmount server attached to garage ceiling. It’s fun to look at and is out of the way, but I need a ladder for maintenance and it weighs about 50lbs.

The fans are way louder than a desktop, especially when it is under load.
It is supposed to have decent ventilation, temperature and humidity regulation yet has so far been extremely hardy even below freezing and above 100°F for extended periods of time.

It has several enterprise features to ease maintenance such as redundant power supplies, hot-swap drive bays, lots of sensors, and remote management via a web browser or IPMI.

Power consumption averages 130W, or about 1,140kWh per year; roughly $138.15 in Seattle.
That’s about as much as a bright incandescent light bulb, and it’s a bit wasteful for one user.
Five users though?
~228kWh/year each.
That’s less than the cloud server hardware required for a mobile device making use of Google’s or Apple’s clouds.
Further reading on this topic:

	
The Surprisingly Large Energy Footprint of the Digital Economy by Bryan Walsh

	
The spiralling energy consumption behind your smart phone by Betsy Reed

	
The secret energy impact of your phone by Owen Williams

A rackmount server like mine can handle far more than 5 users, assuming they aren’t all trying to transcode video.

It also makes a great heated perch.

[image: bird on server]

Figure 10. Bird perched on server.

7.2.2. Admin computer

It’s helpful to have a separate computer from your server to make changes.
I usually run mario using a laptop as my admin computer.

7.2.3. Test devices

 Your users will have their own computers and mobile devices (their clients).
Maintain a couple of different clients so you have comparable environments to better help your users.

TIP: Be a user of the services you self-host.
This is dogfooding.
Dogfooding keeps you honest and helps you empathize with others.

7.2.4. Hard drives

I use HDDs (hard disk drives) for data storage, mainly as a cost-saving measure vs. public cloud storage or SSDs (solid-state drives).
The cost of public cloud block storage far exceeds the gigabyte-hour cost of my HDDs.
I priced out one month of 5TB HDD block storage on AWS at $228.10.
With ZFS I’m also taking a snapshot (bascially a full local backup) every fifteen minutes.
One month’s worth of hourly snapshots (the closest comparable I could find) is another $310.68 on AWS.
That’s $535.67 total, which is about what I spent on my drives.
So I broke even in a month and the drives should last years.

For redundancy I recommend using two of the same drive, mirrored (RAID 1).
This also increases read performance (for most reads) and halves usable storage space.

HDDs are plenty fast when measured from the standpoint of self-hosted service response time.
The OS (operating system) and services do well at caching data served, assuming the server has sufficient RAM.
Remote backups can take a while, and that’s fine.

I use one SSD for the OS and everything besides my photos/documents/etc, since start-up time for the OS is important and realizes far less benefit from the OS filesystem cache (especially at boot time).

An interesting alternative to HDDs for special cases is object storage.
It’s a very scalable cloud-based unstructured key-value store that the OS can’t use directly, but Nextcloud can.
There are many aspects to consider when comparing the two options, such as:

	
cost of storage and egress (download)

	
control, autonomy, sovereignty

	
software support for object storage

	
direct access to data

	
speed and means of access

	
network availability

	
backups, versioning, security

I went with HDDs for direct, local access to my data.
I really wanted to know exactly where they were stored and for ultimate flexibility when I change or try new services.
Most of my services require direct access anyway.

7.2.5. Networking

 If you are hosting at home, you need a reliable WAN (wide-area network) connection if you want to be able to connect from other places besides your LAN.
Use wired ethernet cables to your server, not Wi-Fi.
A wired LAN is more reliable and easier to troubleshoot.

Minimum requirements

Here are some typical minimums for hosting at home:

	
100mbps up / 100mbps down ISP connection

	
Cat 5 ethernet cable (for your server)

	
802.11ac Wi-Fi (for clients)

I just made these up based on what works for me, then doubled that so you have some room to grow.

Home router configuration

 Learn how to configure your router.
Keep it up to date and maintain a strict firewall with only the necessary ports open / forwarded.

Port forwarding allows inbound connections through your WAN boundary to your server.
Read Section 6.2, “Digital security” before forwarding any ports.

Make a sketch to better understand your network.
Here’s a simple diagram I created using asciiflow.com to plan cabling and visualize the flow of traffic through my network devices:

[image: WAN to LAN traffic]

Figure 11. WAN into LAN traffic flow diagram.

Arrows represent ethernet cable.
The router provides electricity to the mini switch using PoE (power over ethernet).
The server has two NICs (network interface cards): one for the OS and everything within (including all services), and one for a network connection to the embedded OOB (out-of-band) remote management computer with IPMI (Intelligent Platform Management Interface).
WAN traffic is allowed to flow to the main NIC and not to the IPMI NIC.

7.2.6. Electricity

 Use a surge protector.
Consider a UPS (uninterruptible power supply) if your power at home is unreliable.

7.2.7. Physical security

 Keep your server safe, similar to other valuables in your home.
At the very least, restrict physical access.

7.3. OS install

 Here’s a guide to setting up your server.
The OS install takes about five minutes if everything proceeds smoothly.
Steps are omitted for brevity when the default is acceptable.

As you install the OS, think ahead to disaster recovery.
Take notes and visualize yourself repeating the process precisely.
At each step in the interactive Ubuntu installer, accept the default or write down your choice.

	
Install Ubuntu 24.04 LTS server.
Refer to this tutorial for step-by-step instructions.

	
Use a static LAN IP address when configuring networking.
You may also be able to leave this as the default (DHCP/dynamic), and use your LAN router to assign an IP address that doesn’t change.

	
Optional: use full-disk encryption.
See Section 6.2.6, “Full-disk encryption”.

	
Note the username and password when you set up a user account (called a “Profile” in the installer). You’ll need these soon.

	
Install OpenSSH server when prompted to do so.

	
Do not install Nextcloud or Docker, let mario install these later.

Congratulations, you just installed Linux!
Next steps:

	
Optional: after installing Ubuntu, add two HDDs and format them with ZFS.
See Section 7.3.1, “ZFS setup”.

	
Download mario onto your admin computer (a separate computer from your server). See Chapter 11, More resources.

	
Run mario on your admin computer to provision your server. See Chapter 8, mario.

7.3.1. ZFS setup

The OS takes care of itself pretty well.
For more robust data storage, you can add a couple of HDDs and manage them with ZFS.

ZFS adds many features and some complexity.
The learning curve is worth it.
The guide below walks through creating a simple pool of two mirrored drives, visible at /data.
This is a reasonable starting point, providing increased fault tolerance and better read performance than a single drive.

On the server, run these commands as root (hint: use sudo su - first).
The code below assumes you started with one drive for the OS, the OS called that drive /dev/sda, then you added two more drives, and those were assigned /dev/sdb and /dev/sdc.
Adjust these as necessary, using lsblk to figure out yours.

Listing 4. ZFS setup (🚀 server)
 # Create partition tables.
parted /dev/sdb mklabel gpt
parted /dev/sdc mklabel gpt

Create ZFS main mirrored pool and set attributes (for all future datasets
in this pool).
zpool create -O mountpoint=none main mirror /dev/sdb /dev/sdc
For performance.
zfs set atime=off main
To save space.
zfs set compression=on main
For security.
zfs set exec=off main
zfs set setuid=off main
zfs set canmount=off main

Create encrypted dataset in "main" pool. This is the "parent" dataset, we
can easily add more later and they'll all be encrypted.
openssl rand -base64 32 > /root/secure-dataset-key
zfs create -o encryption=on -o keyformat=passphrase \
 -o keylocation=file:///root/secure-dataset-key main/secure
zfs set canmount=off main/secure

Create usable (mount-able) dataset.
zfs create -o mountpoint=/data main/secure/data

This might not be necessary if you _never_ want to execute anything in
/data. I found I needed it for something within a container (ffmpeg, I
think). You can start with exec=off and turn it on later if you want.
zfs set exec=on main/secure/data

Here are a few commands to see details about what you just created.
These do not require root access.

Listing 5. show ZFS details (🚀 server)
 # Examine pools.
zpool status
zpool list

Examine datasets.
zfs list

On Ubuntu 24.04 LTS, more steps are required to automatically mount this new filesystem when the server boots.
What follows is from the zfs-mount-generator(8) manual page, with a few corrections.
These must be run as root.

Listing 6. ZFS mount on boot setup (🚀 server)
 # enable tracking for the pool
mkdir /etc/zfs/zfs-list.cache
touch /etc/zfs/zfs-list.cache/main

enable the tracking ZEDLET
systemctl enable zfs-zed.service
systemctl restart zfs-zed.service

trigger cache refresh
zfs set relatime=off main/secure
zfs inherit relatime main/secure

re-run systemd generators and reboot
systemctl daemon-reload
reboot

7.4. Server maintenance

I use short monthly and yearly maintenance checklists.
I update my checklists about as often as I use them.
Here are examples you might use as starting points.

Checklist: Monthly Maintenance

	
Upgrade OS packages.

	
Check storage space remaining.

	
Back up router configuration.

Note that Ubuntu server comes with the unattended-upgrades package, which automatically installs security updates for you.
You may want to instead have “confirm OS package upgrades worked” on your checklist.

Yearly tasks are typically more work and involve aspects of a system and its dependencies which should change less often.

Checklist: Yearly Maintenance

	
Test restore from backup.

	
Review and improve threat model.

	
Open server chassis and vacuum dead spiders.

The following sections cover specific maintenance tips and tricks.

7.4.1. Hardware failure

 Plan on hardware failure.
If you can afford it, the easiest way to reliably run one server is to buy two identical servers.
Use the second for parts or a ready as-is replacement machine (also called a “cold spare”).

7.4.2. Software updates

 Keep your server up to date.
For the OS:

Listing 7. upgrade packages (🚀 server)
 sudo apt update && sudo apt full-upgrade

This will update local package information and—​if that succeeded—​upgrade the OS.
Root access is required, hence sudo.
This is relatively safe and typically requires little to no interaction besides a confirmation to proceed.
A reboot may be required afterwards (e.g. when the kernel is upgraded).
The server will say if a reboot is required upon login.

Each service in Chapter 9, Services includes a “Maintenance notes” section with update instructions.
Container images can be updated by hand with Docker Compose or automatically by Watchtower.
See Section 9.4, “Watchtower: service updater” for details.

7.4.3. Monitoring

 Monitor server health.
Check free disk space with df -h.
If things feel slow, check PSI (pressure stall information) with

Listing 8. check PSI (🚀 server)
 tail /proc/pressure/*

atop will also show PSI values.
If your PSI check shows high resource usage, try docker stats to see resource usage per container.
That should help you narrow down the issue to specific services.

If you are using ZFS, you can use zpool iostat to see input/output statistics for your storage pool(s).

At the host level, you can use htop -d 100 to see stats for all processes and threads.
Follow all logged events for the host with journalctl -f.

7.4.4. Backups

 Having useful backups is one critically important practice you’ll rarely get credit for doing well, only blame if it is done poorly.

Check your backups regularly to make sure they work.

Make consistent backups of everything on your server, such that the services running are unaware they are even being backed up.
For example: create a ZFS snapshot and back that up.

Backing up using ZFS snapshots can still cause problems.
For example, ZFS doesn’t guarantee consistent state of backed-up data for running programs.
Say you restored a MariaDB database from backup.
Unless you flushed and locked tables before taking that ZFS snapshot, MariaDB might have been in the middle of a write operation with in-memory data not yet flushed to disk.
It would need to recover, and the data MariaDB was trying to write may be lost.
This manner of data loss is rare, and the risk is acceptable for the typical homelab.

Create backups following the 3-2-1 rule of thumb: make 3 backups.
Store at least 2 local copies on different media.
Have 1 remote backup.

I recommend a backup strategy combining ZFS snapshots with either restic or Borg for sending them offsite.
Here’s a decent comparison of restic vs. Borg.

Here are some example commands demonstrating how to back up a ZFS filesystem.
You can use these to get started writing your own backup script.

Listing 9. example backup script (🚀 server)
 snapName=$(date -I)-backup

sudo zfs snapshot main/secure/data@$snapName ①

sudo restic backup /data/.zfs/snapshot/$snapName ②

sudo zfs destroy -R main/secure/data@$snapName

	① Running this command to create a snapshot takes 0.040 seconds on my server.
Once it is done, a new read-only folder will appear under /data/.zfs/snapshot containing the snapshot.

	② This line assumes you have installed and configured restic.
It can send your snapshot offsite, following the 3-2-1 rule of thumb.

8. mario

mario is a tool I built to help you set up and maintain a server.
It is mainly a wrapper around the well-established Ansible system provisioner.
Everything I’ll do with mario can also be done manually, directly on the server.
The advantage of using mario instead is that each change (say, installing a package) will be made consistently and with an audit trail.
The real payoff of this practice is realized when you collaborate with others, including your future self.
It’s not often easy to remember what you did a year ago and why.

Once your server is online following Section 7.3, “OS install”, use mario to configure and start services.

Please download the source code (see Chapter 11, More resources).
It’ll be helpful to have this handy so you can follow along as you read.

mario can be found alongside this book, in the mario/ folder.
The provision.sh script is in ansible/.

8.1. mario philosophy

 mario is a practical learning tool.
It comes with sensible, tested defaults.
It automates some of the tedious, confusing steps of setting up services on a server.
mario is not a supported and production-ready software product.
It’ll get you started, that’s all.
Continue with it if you like or just use it to fast-forward your personal cloud setup.
Something else does or will do its job better.
Here are some suggestions to get the most out of mario.

The first time you run mario, follow the instructions as closely as possible.
Many assumptions are made so it works “out of the box”, and it is meant to be easily customizable.

mario configuration files are declarative: They contain the state you want your server to end up at, not all the individual commands you’d run manually to achieve the same state.
mario’s provision.sh runs Ansible, and Ansible runs the commands for you on the server (like running chmod on a file) in a predictable and repeatable manner.
The desired end state, as declared in the configuration files, is reached and confirmed by Ansible.

After getting mario up and running successfully once, run it again!
Provisioning with mario is reassuringly idempotent: The system will not change in any meaningful way after the desired state is reached.
Once provision.sh completes successfully, it may be re-run to confirm the server is still in the desired state.
Then, start tinkering.
You can find some ideas in Chapter 13, Exercises.

If you are familiar with and prefer using VMs, you may want to first create a VM and run mario against that until you’re ready to run mario pointed at your real server.
Or perhaps your real server is a VM—​that’ll work fine too.

8.2. SSH setup

 mario runs on your admin computer and expects to be able to connect directly to your server using SSH.
Here’s how to get this working.

First, map your server IP address to a convenient name.
Using the IP address from Section 7.3, “OS install”, add a line like this to your hosts file (e.g. /etc/hosts):

Listing 10. line to add to hosts file (🏠 admin computer)
 192.168.1.100	mario_server

Confirm you’re able to ping the server using the name mario_server.
Here’s what it looks like when it works:

Listing 11. test ping server (🏠 admin computer)
 $ ping mario_server
PING mario_server (192.168.1.100) 56(84) bytes of data.
64 bytes from mario_server (192.168.1.100): icmp_seq=1 ttl=64 time=0.316 ms
64 bytes from mario_server (192.168.1.100): icmp_seq=2 ttl=64 time=0.535 ms
64 bytes from mario_server (192.168.1.100): icmp_seq=3 ttl=64 time=0.178 ms
^C
--- mario_server ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2041ms
rtt min/avg/max/mdev = 0.178/0.343/0.535/0.146 ms

Next, make your SSH client pass along the correct username when you run ssh mario_server.
Here’s an example client configuration template for OpenSSH.
Replace your-username with the account username on your server.

Listing 12. customize OpenSSH client configuration (🏠 admin computer)
 Host mario_server
 User your-username

You can add that to ~/.ssh/config, adapting as necessary for the SSH client you use.
Test it by running ssh mario_server.
You may see something like this:

Listing 13. SSH host fingerprint prompt (🏠 admin computer)
 The authenticity of host 'mario_server (192.168.1.100)' can't be established.
ECDSA key fingerprint is SHA256:o2kUkvSP3JG9PTt/Ju11FWKkCpTJCB4rY3jQvImtRNw.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

If the IP address is correct, it is safe to assume the LAN-only server you just created is the same one you’re trying to connect to now.
Go ahead and continue with yes+Enter.
If you want to be super careful, run one of these commands on the server and confirm the fingerprints match:

Listing 14. show SSH host public key (🚀 server)
 # use this if you saw "ECDSA key fingerprint..." earlier
ssh-keygen -lf /etc/ssh/ssh_host_ecdsa_key.pub

use this if you saw "ED25519 key fingerprint..." earlier
ssh-keygen -lf /etc/ssh/ssh_host_ed25519_key.pub

use this if you saw "RSA key fingerprint..." earlier
ssh-keygen -lf /etc/ssh/ssh_host_rsa_key.pub

Next, set up public key authentication.
If you need a key pair, run ssh-keygen or similar on your admin computer to create one.
If you already have a key pair, use it.
Copy the public key to the server with ssh-copy-id or similar.
For example:

Listing 15. install SSH key on server (🏠 admin computer)
 $ ssh-copy-id mario_server
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 2 key(s) remain to be installed -- if you are prompted now it is to install the new keys
mario2024@mario_server's password:

Number of key(s) added: 2

Now try logging into the machine, with: "ssh 'mario_server'"
and check to make sure that only the key(s) you wanted were added.

Test that everything so far is working by running ssh mario_server.
You should see something like this:

Listing 16. successful SSH to server (🏠 admin computer)
 $ ssh mario_server
Welcome to Ubuntu 24.04 LTS (GNU/Linux 6.8.0-31-generic x86_64)

... snip ...

Last login: Fri May 3 16:44:52 2024 from 192.168.1.225
user@server:~$

8.3. Provision server

 Run provision.sh on your admin computer (not on your server):

Listing 17. mario first run (🏠 admin computer)
 cd mario/ansible
./provision.sh

On this first invocation, mario will check for prerequisites and prompt you to enter values specific to your server into a configuration file.

Listing 18. mario first run output (🏠 admin computer)
 You don't have a config file. I'll create one for you now.

Please edit 'config' and re-run this script.

Here’s a guide for settings in your config that must be changed from their defaults.
Be sure to study the comments in that file, too.
I’ll assume you have a domain name and a DNS provider with an API.
See Section 8.4, “Server domain name” for details on how to obtain this.

	
DNS_API_PROVIDER

	
Enter the name of your DNS provider here (the one with your DNS records).
mario configures Traefik to talk directly with your DNS server for issuing Let’s Encrypt certs.
It doesn’t need to know about your domain name registrar (the place you obtained your domain name), unless it is the same as your DNS provider.

	
NAMECHEAP_*, DUCKDNS_*, R53_DNS_*, DO_*…​

	
Enter credentials for only one provider, the same provider you specified in DNS_API_PROVIDER.

	
DNS_RESOLVER_EMAIL

	
Enter an email matching what you use with your DNS API provider.
You may receive emails from Let’s Encrypt at this address.

	
MARIO_DOMAIN_NAME

	
This will be a name like example.duckdns.org or example.com.
Individual services will be named based on this, e.g. jellyfin.example.com.

Finish editing config and run provision.sh again.
This run will ask you for the password you set during Section 7.3, “OS install” and subsequent runs will not.
You should see output similar to this:

Listing 19. mario second run output (🏠 admin computer)
 BECOME password:

PLAY [all] ***

TASK [base : Configure apt cache] **
ok: [mario_server]

TASK [base : Install packages] ***
changed: [mario_server]

... snip ...

PLAY RECAP ***
mario_server : ok=21 changed=0 unreachable=0 failed=0 skipped=3 rescued=0 ignored=0

It takes around ten seconds for mine to complete.
All tasks will be ok in the recap for a fully provisioned system.
Some tasks will be skipped until Nextcloud is started for the first time—​ignore those for now.

If provision.sh completed without errors, mario was able to get your server and services ready to use.
Proceed directly to Section 8.5, “Start services”.

8.4. Server domain name

Your server needs a name.
You’ll obtain a domain name from a registrar and input this hostname during Section 7.3, “OS install”.
I recommend using a single domain name and naming all your services with subdomains (e.g. cloud.example.com).
You can either use a free domain name or buy a domain name from a registrar.
mario needs the domain name to be able to use a DNS provider with an API for setting up HTTPS web traffic encryption.
Note that the registrar and DNS provider may differ.

You may also want to be able to refer to your server by name when you’re away from your LAN if you allow WAN access and/or if you have a dynamic WAN IP address.
Check with your DNS provider about adding appropriate records for this purpose (e.g. A and CNAME records).

8.4.1. Public DNS

 Duck DNS provides a free domain name and DNS service.
mario also works with paid services such as Namecheap, DigitalOcean, and Route 53.
I recommend any of the paid options over Duck DNS.
Support for other DNS providers (ahem, especially self-hosted ones!) may be added later.

Public DNS records do not presume WAN access.
Section 6.2, “Digital security” covers WAN access in detail.

Duck DNS

 If you want a free domain name from a provider with an API, you can try your luck with Duck DNS.

	
Start at duckdns.org.

	
Log in and add a domain.

Your domain will be named something like blah.duckdns.org.
Use this in place of example.com as appropriate, e.g. use cloud.blah.duckdns.org for cloud.example.com.

Amazon Route 53

 If you choose Route 53, create a new hosted zone with the domain name you own.
Make note of the Route 53 name servers.
Back at your registrar, input these name servers.

On Amazon IAM, create a user with permission to update this hosted zone.
Here’s a policy with way too much access that nevertheless works:

Listing 20. naive Route 53 policy
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "route53:*",
 "Resource": "*"
 }
]
}

8.4.2. Dynamic DNS

 If you want WAN access and your IP address changes periodically, it’s handy to have this updated in DNS automatically.
Similar to Traefik setting up HTTPS certs, this uses a DNS provider API.
There are several options here, all left as exercises for the reader.
One idea is to find and stand up a dynamic DNS client for your Docker image.
These are generally very simple services to set up.
Another idea is to see if your router will do the dynamic DNS updates.

8.4.3. Internal DNS

 It is handy to have an internal DNS server to be able to refer to your server by name.
These internal names should match the public names and point to LAN-only private IP addresses.
This way you can use the same names inside and outside your LAN and your Let’s Encrypt certs will work.
Your LAN router likely has a DNS server and may allow you to assign names to IP addresses.

If you don’t have an internal DNS server, you can create more hostname to IP address mappings like the one we added in Section 8.2, “SSH setup”.
Here’s that hosts file again:

Listing 21. hosts file with service names (🏠 admin computer)
 # for provisioning from admin computer
192.168.1.100	mario_server

for accessing services from admin computer
192.168.1.100	traefik.example.com
192.168.1.100	cloud.example.com
192.168.1.100	jellyfin.example.com
192.168.1.100	wallabag.example.com
192.168.1.100	scratch.example.com

Manually mapping IP addresses to hostnames with a hosts file is handy for initial setup and maintenance when your internal DNS server fails.
Remember that only the computer with these specific mappings will be able to use the names.
Test the mappings using ping on your admin computer.

I’ve shown examples of two styles of service domain names.
cloud.example.com indicates the function of the service, rather than the service’s brand name.
nextcloud.example.com would work just as well.
The choice is yours.

8.5. Start services

 mario has prepared your server to run a handful of services.
Docker and Docker Compose are installed.
Docker configuration files are stored in directories under /root/ops.
Data for services are stored in directories under /data.

None of the services are running yet.
We’ll soon get to how to turn them on and start using them.

Let’s first take a step to save a lot of typing.
Services are started and stopped with Docker Compose, which is always run with docker compose.
When you run docker compose, you must first be in a folder containing a compose.yml file.
By convention, the name of that folder is the name of the service.
A typical usage pattern is:

Listing 22. start a service in its folder (🚀 server)
 sudo su -
cd /root/ops/traefik
docker compose up -d

Try to avoid this method.
The fewer commands you run directly as root, the better.
I recommend this instead:

Listing 23. start a service, explicit configuration file (🚀 server)
 sudo docker compose --file /root/ops/traefik/compose.yml up -d

mario installs a program called dc on the server to save you some typing:

Listing 24. start a service with dc (🚀 server)
 # equivalent to
sudo docker compose --file /root/ops/traefik/compose.yml up -d
dc traefik up -d

sudo is required to run some commands, including docker compose.
The dc script will run sudo for you.

8.5.1. Start reverse proxy

Stand up the reverse proxy first.
On your server, start Traefik with dc traefik up -d.
If that worked, wait a minute or two and visit https://traefik.example.com in a web browser to see the Traefik dashboard.
While you are waiting for the dashboard, tail the logs with dc traefik logs -f.

It may take that minute or two for Traefik to set up Let’s Encrypt HTTPS encryption certs, so don’t worry if you get invalid cert warnings at first.
You should see something like this for a working Traefik service:

Listing 25. typical Traefik logs, edited for brevity (🚀 server)
 + sudo docker compose --file /root/ops/traefik/compose.yml logs -f
rp-1 | Traefik version 3.0.0 built on 2024-04-29T14:25:59Z version=3.0.0
rp-1 | Starting provider aggregator aggregator.ProviderAggregator
rp-1 | Starting provider *traefik.Provider
rp-1 | Starting provider *docker.Provider
rp-1 | Starting provider *acme.ChallengeTLSALPN
rp-1 | Starting provider *acme.Provider
rp-1 | Testing certificate renew... acmeCA=... providerName=myresolver.acme
^Ccanceled

If you waited a bit, re-loaded the page, and are still getting invalid cert warnings from your browser when you try to visit https://traefik.example.com, read the Traefik log messages carefully and also see Section 8.6, “Encryption certificates” for troubleshooting steps.
Once you’re able to view the dashboard, stop tailing the Traefik logs with Ctrl+c.

8.5.2. Start other services

 Starting a mario service is always done with dc SERVICE up -d, just like we did with Traefik.
To stand up everything at once, you could use this shell script:

Listing 26. start all services ad-hoc Bash script (🚀 server)
 for service in $(sudo ls /root/ops); do
 dc $service up -d
done

This will also pull and build images and update containers as necessary.
Services out of sync with their compose.yml file will be restarted.
This is idempotent: running and up-to-date services are left unchanged.

8.6. Encryption certificates

Traefik will automatically install Let’s Encrypt certs to encrypt HTTP traffic.
The certs are issued using a DNS challenge.
This way to authenticate a cert request is especially handy for servers with zero public-facing inbound ports, allowing convenient HTTPS even within closed LANs.
The DNS challenge is configured using labels in Traefik’s compose.yml configuration file.

Traefik can accept HTTPS, decrypt it, and pass along unencrypted HTTP to web services.
This is called SSL termination, and is configured by lines in Traefik’s compose.yml mentioning acme.

Take a look at a compose.yml file for any service included with mario.
Every service has a tls section defined on its router to enable HTTPS encryption and SSL termination.

If you see cert warnings while trying to reach your web services, first examine Traefik logs as indicated in Section 8.5.1, “Start reverse proxy”.
To increase the Traefik log verbosity, change --log.level=INFO to --log.level=DEBUG in Traefik’s compose.yml, re-provision, and re-start Traefik.
To troubleshoot further, confirm DNS queries are succeeding since this affects the DNS challenge.

Listing 27. example DNS tests
 ####
Try these commands on both the admin computer and server.
Replace dig (and its arguments) with your favorite DNS tool.
Replace traefik.example.com with your Traefik service name.
####

Look up Traefik on default DNS server.
Should quickly return a LAN private IP address.
dig traefik.example.com

Look up Traefik server name on Quad9 DNS.
- @9.9.9.9 forces Quad9's DNS service.
- +short uses terse output
Should return nothing--we didn't set an IP address.
dig @9.9.9.9 +short traefik.example.com

Fetch TXT record for Traefik.
Contains a long unique string while Traefik is executing a
DNS challenge and is otherwise not set.
dig traefik.example.com TXT

8.7. Tiny test service

 If you got this far, try standing up a test service.
This is useful to confirm networking is functional for Docker containers running on your host.
We likely already have this assurance if Traefik is working (since it requires networking for the DNS challenge), but this may still be a useful tool for another time, or at least a positive step towards creating your own useful services.

This service demonstrates pinging a public server.
On your server, create the folder ~/ping/.
Create a file compose.yml in that folder, containing:

Listing 28. tiny test service config (🚀 server)
 version: '3'

services:
 test:
 image: alpine
 command: ping example.com

In the folder ~/ping/, run the command sudo docker compose up.
Hit Ctrl+c after a few seconds.
You should see something like this:

Listing 29. start tiny test service (🚀 server)
 $ cd ~/ping/
$ sudo docker compose up
[+] Running 2/2
 ✔ Network ping_default Created 0.1s
 ✔ Container ping-test-1 Created 0.1s

Attaching to ping-test-1
ping-test-1 | PING example.com (93.184.216.34): 56 data bytes
ping-test-1 | 64 bytes from 93.184.216.34: seq=0 ttl=55 time=3.477 ms
ping-test-1 | 64 bytes from 93.184.216.34: seq=1 ttl=55 time=3.236 ms
ping-test-1 | 64 bytes from 93.184.216.34: seq=2 ttl=55 time=3.363 ms
^CGracefully stopping... (press Ctrl+C again to force)
Aborting on container exit...
[+] Stopping 1/1
 ✔ Container ping-test-1 Stopped 10.4s
canceled

For extra credit, incorporate your tiny test service into mario.

This is the basis for adding more interesting services, too.
It’s only a few more lines of code and configuration to create a small API or web service and a few more to publish it with your reverse proxy.

9. Services

 Now you can try out the services provisioned by mario.
This chapter covers what they provide and how to manage them.

Table 3. Purposes of default mario services

	Purpose
	See

	sync and share files, groupware

	Section 9.1, “Nextcloud: file sync and share”

	stream music and home movies

	Section 9.2, “Jellyfin: stream audio and video”

	read articles offline, without distractions

	Section 9.3, “Wallabag: save and read articles”

	keep other services up to date

	Section 9.4, “Watchtower: service updater”

	learn to code with visual tools

	Section 9.5, “Scratch: visual programming”

These particular services are a small fraction of those available to self-host.
They reflect my users’ preferences (including and over-indexed to my own) in reading, sharing, media, and so on.
Getting them running will provide some useful functionality for your users and a good starting point for self-hosting whatever you want.

For each service you’ll find my personal commentary and issues I encountered.
If I mention a feature I’d like to see added, I’ve also thought of adding it myself (or trying to convince someone else to add it, or raising money to pay someone to add it).
If I link to a bug that is closed in an issue tracker, it’s because I have tested and, at the time of writing, I’m still experiencing the bug in an official/supported release that is supposed to have the fix.

Mobile usage is high for the users I support, so that was also a factor when I chose these services.
Nextcloud, Jellyfin, and Wallabag have mobile apps and integrations, and I use these often.

The server-side commands for managing services are standardized: You’ll see the pattern dc SERVICE ACTION ARGS repeated many times.

9.1. Nextcloud: file sync and share

A Steadfast personal cloud needs convenient file sharing and synchronization.
Nextcloud is an excellent choice given its stability and popularity.
It can be daunting to self-host, but mario makes it easy and fun.

[image: nextcloud]

Figure 12. Nextcloud Files app screenshot showing files, folders, and share buttons.

A well-maintained Nextcloud server provides a solid foundation for de-Googling.
Nextcloud can be self-hosted for free when installed via mario.
Once you’ve got Nextcloud running, see Section 10.8, “More about Nextcloud” for lots of my opinions on how best to customize it.

9.1.1. Quick start

	
Provision with mario from your admin computer.

	
Start Nextcloud with dc nextcloud up -d on your server.

	
Navigate to https://cloud.example.com on your admin computer.

	
Follow the web-based setup page to create an admin account.

	
Skip installing recommended apps.

9.1.2. Maintenance notes

 Run dc nextcloud pull && dc nextcloud up -d on your server to upgrade and replace Nextcloud service containers.

9.1.3. Issues

 See Section 10.8.12, “Various issues”.

9.2. Jellyfin: stream audio and video

Jellyfin is a personal streaming media server.
mario will set up a basic Jellyfin server.

[image: jellyfin]

Figure 13. Jellyfin screenshot showing metadata for a movie. Big Buck Bunny is licensed CC BY-3.0 by the Blender Foundation.

9.2.1. Quick start

	
Provision with mario from your admin computer.

	
Start Jellyfin with dc jellyfin up -d on your server.

	
Navigate to https://jellyfin.example.com on your admin computer.

	
Follow web-based setup steps.

If you have a GPU, look into hardware acceleration.
This is useful if videos can’t be played directly by a client and need to be transcoded on the fly.
Jellyfin can transcode using only CPU, but it is way faster with a GPU.

Jellyfin can take advantage of some CPUs with built-in hardware transcoding.
Intel Quick Sync Video, for instance.

9.2.2. Maintenance notes

 Run dc jellyfin pull && dc jellyfin up -d on your server to upgrade and replace the Jellyfin service container.

9.2.3. Issues

 Here are some features I’d love to see implemented in Jellyfin.

Feature: Share playlists

 Playlists are private by design.
I’d like the ability to share them.

Feature: Clips

 I often want to share, hear, or re-watch a specific part of some media.
I think it would be just so cool to be able to create clips without actually creating new media files.

Feature: Offline mobile media

 I want a Jellyfin mobile app that will automatically cache media and allow playing while offline.

Workaround: there are two separate mobile apps that can download and cache media for offline playing.
Finamp for music, and Findroid for video.

9.2.4. Manage Jellyfin media with Nextcloud

 Jellyfin and Nextcloud both run on the same server.
You can use this fact to leverage their individual strengths as services while they operate on the same data, one as the media streamer and one as the media file manager.
mario creates special music and video folders on the server and makes them available to both services.
Nextcloud “external storages” lets you upload files to these folders and Jellyfin will automatically notice and allow streaming the files you upload.

Nextcloud’s compose.yml file has the entry /data/shared/media/video:/data/video:rw in volumes.
/data/shared/media/video is the path on the server that will hold the actual video files, /data/video is where they’ll show up inside the container, and rw says Nextcloud has read and write access to this volume.
There’s another similar folder for music files.
See Section 10.8.4, “Detailed setup” for how to add them as external storages in Nextcloud.

In Jellyfin’s compose.yml file you’ll find similar lines to add music and videos volumes, but with ro (for read-only) instead of rw.
Jellyfin only needs read access to the folders to be able to stream the files they contain.

To see the Nextcloud-managed media files in Jellyfin, add two media libraries:

	
Choose content type “Movies”, click the “+” icon next to “Folders”, and choose /data/video.

	
Choose content type “Music”, click the “+” icon next to “Folders”, and choose /data/music.

9.3. Wallabag: save and read articles

Wallabag saves articles for distraction-free offline reading.

[image: wallabag]

Figure 14. Wallabag screenshot showing unread articles view.

9.3.1. Quick start

	
Provision with mario from your admin computer.

	
Start Wallabag with dc wallabag up -d on your server.

	
Navigate to https://wallabag.example.com on your admin computer.

	
Log in as wallabag user with password wallabag.

	
Update password for wallabag user.

9.3.2. Maintenance notes

 Run dc wallabag pull && dc wallabag up -d on your server to upgrade and replace Wallabag service containers.
If you run into any issues, try manually applying database upgrades (see Section 9.3.3.1, “Bug: Upgrades break everything”).

9.3.3. Issues

 Here’s one issue I have with Wallabag and a feature I want.

Bug: Upgrades break everything

 Database migrations are not (always?) automatically applied.
There may be other duplicate or related bug reports for this same thing, that’s just one example.
Luckily, there’s an easy workaround.

Apply the workaround to a mario system with:

Listing 30. force Wallabag database migration (🚀 server)
 dc wallabag exec app /var/www/wallabag/bin/console \
 doctrine:migrations:migrate --env=prod --no-interaction

The exec command says we want to run something in a container.
This runs the console utility in the app service container.
The second line indicates necessary database migrations (schema and data updates) should be run using prod settings, without interactive prompts.

This is idempotent, as database migrations should be.
After the first run, subsequent runs output: [OK] Already at the latest version.

It’s unclear why thes migration is not automatically performed during an upgrade.
Perhaps it is only necessary in special cases—​I’ve only had to do it twice in a few years.

Feature: Share with other users

 I want to be able to share content with other Wallabag users, within Wallabag.

9.4. Watchtower: service updater

 Watchtower is handy for keeping your Docker containers up to date.
It will discover and check outdated containers, pull new images, and restart services to create new containers.

[image: watchtower]

If you never want containers upgrading automatically, don’t run Watchtower.
Or, use configuration settings to allow or block auto-upgrades for particular containers.
mario uses a container label to prevent watchtower from updating Scratch, for example.

9.4.1. Quick start

	
Provision with mario from your admin computer.

	
Start Watchtower with dc watchtower up -d on your server.

From now on it’ll run in the background, automatically upgrading containers whenever possible, on a reasonable schedule (every 24 hours by default).
You can forget about it until it breaks (or breaks something else).

9.4.2. Maintenance notes

 Run dc watchtower pull && dc watchtower up -d on your server to upgrade and replace the Watchtower service container.

9.4.3. Issues

 It does not automatically roll back if a container upgrade fails.
Granted, this would be challenging to implement.
A service might only have one-way database migrations, for example.
I think the Watchtower maintainers made the right decision to omit automatic rollbacks (likely to keep Watchtower simple).

You may experience an issue where a service is broken by Watchtower.
If you suspect this is the case and you know when the service started breaking, try to correlate that with any upgrades appearing in dc watchtower logs.
I avoid this by only using Watchtower for non-critical services.
I don’t let Watchtower auto-upgrade my Nextcloud service, for example.

9.5. Scratch: visual programming

 Scratch is a popular and very approachable visual programming language geared towards interactive multimedia and learning.
The most well-known public online version adds sharing, studios, comments, stars, hearts, endless memes and games.
These “social” features may be exactly what a user wants/needs (e.g. one may remix an existing project and learn from it), or it may unintentionally reorient a user from productive creation to mindless consumption (e.g. doomscrolling).

This is where your new Steadfast power comes in: Scratch can be self-hosted without the social features.
In fact, that’s the simplest way to self-host it.
This is a great option if your users want to focus on creating in Scratch and being social in person. 😉

[image: scratch]

Figure 15. Scratch screenshot showing a new empty project.

Scratch doesn’t require any persistent data, setup, nor auth.

9.5.1. Quick start

	
Provision with mario from your admin computer.

	
Start Scratch with dc scratch up -d on your server.

	
Navigate to https://scratch.example.com on your admin computer.

9.5.2. Maintenance notes

 Scratch uses a custom Docker image so the upgrade process is significantly more complex than upgrading other services.
First, open the Scratch custom/Dockerfile on your admin computer.
That Dockerfile can be found in a subfolder of mario/ansible in the mario source code.

If you want to base the image on a newer version of Node.js, visit the Node.js page on Docker Hub and select a version to use in the FROM line of the Dockerfile.
If you want to upgrade Scratch, visit the releases page and select a version to use for SCRATCH_VERSION in the Dockerfile.

Re-run provision.sh on the admin computer.
Re-build the image with dc scratch build --pull on the server.
Finally, replace the Scratch service container by running dc scratch up -d on the server.

10. What’s next?

 By this point, I’m assuming you’ve got your server running and some services too.
Here’s where you can find a handful of ideas for what to try next.

10.1. Learn more

 If you like this book, and you want to learn and do more, do it.
Ride that wave of inspiration.
Seek both breadth and depth.

For breadth, look for a comprehensive book about Linux since mario expects Linux, and a better understanding of Linux can help you customize your server with confidence.
There aren’t any Ubuntu-specific dependencies, but Ubuntu is the only Linux flavor mario has been extensively tested on at the time of writing.
One of my first purchases when I wanted to just finally “get” Linux was UNIX: The Complete Reference, a thousand-page monster covering many, many concepts.
I studied it in chunks, referred to it often, and never read it cover to cover.
If I started learning again from scratch today, I’d still have a book like that handy while studying online resources and trying stuff at home.

For depth, immerse yourself in fundamentals.
Learn how a computer works.
Push past abstractions and make progress towards first principles.
Take a computer science class in an area supporting something else you want to do.
For example, if you want to code your own web services, take a class in programming for the web.
If you want to understand how source code makes a computer do things, take a class in compilers.

Work through this book in a class or small group.
See Chapter 12, Discussion topics and Chapter 13, Exercises.

Participate in FOSS communities to learn from and share with others.
Pass on what you’ve learned.
File a bug.
Post in a forum.
It’s fun!

Conferences like SeaGL bring together bright minds on many topics, including self-hosting.
If you’ve done something cool, share it!

10.2. Use a GPU

A GPU offers more efficient video transcoding with Jellyfin, reducing server CPU usage and speeding up remote video streaming.

A FOSS voice assistant would benefit from a GPU.

A GPU could also speed up video transcoding and facial recognition.

Modern generative AI workloads like large language model chat and image generation are much faster with a GPU.

10.3. AI

AI is once again the latest hotness.
You can run your own image generators and LLMs (large-language models) at home.
No GPU is required.
Here’s a compose.yml that’ll work with mario to stand up LocalAI.

Listing 31. example LocalAI service config
 version: '3.6'

services:
 api:
 image: quay.io/go-skynet/local-ai:latest
 environment:
 MODELS_PATH: /models
 volumes:
 - /data/localai/models:/models:cached
 command: ["/usr/bin/local-ai"]
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.localai-https.entrypoints=websecure"
 - "traefik.http.routers.localai-https.rule=Host(`localai.example.com`)"
 - "traefik.http.routers.localai-https.tls.certresolver=myresolver"
 - "traefik.http.routers.localai-https.middlewares=lan-only"
 networks:
 - traefik_default
 restart: unless-stopped
networks:
 traefik_default:
 external: true

Note the middleware to only allow traffic from your LAN.
This assumes your LAN uses 192.168.1.* addresses, and expects a corresponding label on the Traefik container to set up the middleware, for example:

Listing 32. label from Traefik configuration allowing only LAN access
 "traefik.http.middlewares.lan-only.ipallowlist.sourcerange=192.168.1.0/24"

Use mario to provision your LocalAI service.

See the LocalAI documentation for further setup help.
Once you get that running, you can use the Nextcloud AI integration app as a convenient frontend.

10.4. Pi-hole

Running a Pi-hole service in your LAN helps block advertisements, trackers, and bad actors using DNS block lists.

Clients (laptops, phones, etc) on your network use the Pi-hole as their DNS server, generally as part of DHCP (Dynamic Host Configuration Protocol) auto-configuration by your router or Pi-hole itself (if you use Pi-hole as your DHCP server).

The Pi-hole translates domain names to IP addresses.
If a domain name is on a block list, it returns a false IP address such as 0.0.0.0.

The technique is imperfect, yet simple and effective.

My Pi-hole server sits between my router’s DNS server and all clients.

[image: DNS traffic diagram]

Figure 16. Pi-hole DNS traffic flow diagram.

Queries for domain names not on any block list will be answered directly or sent upstream.
I set up my Pi-hole to pass queries on to my home router, which will then query a DNS server outside my LAN as necessary.

It’s easy to block individual domain names or entire lists as you see fit.
I’ve used this as an “impulse blocker”, helping the kids avoid distractions during remote school.

The Pi-Hole also has a list of local DNS entries.
I add a few domain names to this list for servers inside my LAN.

Note that some clients will by default bypass an auto-configured DNS server such as Pi-hole.
For example, DNS over HTTPS in Firefox.

10.5. Single sign-on

It would be convenient for users to be able to log in once to get access to all self-hosted services using a common, consistent, and well-designed mechanism (single sign-on), and for sysadmins to be able to manage all users and groups in one place (centralized identity management).

Authentik is one service providing this, and appears to have all the features I want (single sign-on, backend user database, integrates with everything I self-host).
I want to try it out and see it running well for a good while before adding it to mario.
Some of the other self-hosting solutions mentioned in Section 11.2, “Alternatives to mario” do include FOSS central identity management.

10.6. Enforce SSH public key auth

 Some sysadmins choose to require public key authentication for SSH logins.
I think it’s a good idea but I didn’t want to force it on you so I didn’t include it in mario.
I’m using this as an opportunity to demonstrate how to extend mario.
Add this Ansible task to roles/base/tasks/main.yml:

Listing 33. enforce SSH public key auth (🏠 admin computer)
 # This does not affect logging in from a console (e.g. directly connected
keyboard and monitor, or a virtual console).
- name: Disable tunneled clear text passwords
 copy:
 src: pka-only.conf
 dest: /etc/ssh/sshd_config.d/
 owner: root
 group: root
 mode: 0400
 notify:
 - restart sshd

Add this to roles/base/handlers/main.yml:

Listing 34. Ansible handler to restart SSH (🏠 admin computer)
 - name: restart sshd
 service:
 name: sshd.service
 state: restarted

Create roles/base/files/pka-only.conf with:

Listing 35. SSH server config lines (🏠 admin computer)
 PasswordAuthentication no
AuthenticationMethods publickey

Finally, re-run provision.sh.
From now on, your server will require public key authentication for SSH logins.

10.7. Allow WAN access

 mario blocks WAN access by default.
Read Section 6.2, “Digital security” to decide if you want this or not.
You may remove this protection by removing the lan-only middleware from the corresponding router’s Traefik label.
For example, to allow WAN access to Nextcloud, make this change in Traefik’s compose.yml:

Listing 36. patch for WAN access to Nextcloud (🏠 admin computer)
 - traefik.http.routers.nc-https.middlewares=nc-head,nc-redir,lan-only
+ traefik.http.routers.nc-https.middlewares=nc-head,nc-redir

Similarly for Jellyfin, you may delete the whole line referencing the lan-only middleware in Jellyfin’s compose.yml if you decide to expose that service on your WAN.

10.8. More about Nextcloud

 Nextcloud is a key part of my self-hosting setup.
I wanted to include a lot of additional details without cluttering up Chapter 9, Services, so you’ll find these extra sections here.

10.8.1. Basic install

A basic (default, un-customized) Nextcloud install provides remote file storage, organization, and sharing.
It keeps track of actual files and folders stored somewhere (local, remote, cloud, wherever) and tracks additional metadata about those files and folders in a database.
You access it via a web browser and there is a desktop client to sync files locally, similar to Dropbox, Google Drive, and OneDrive.

I’ve come to really trust file sync with the Nextcloud desktop app.
If I see a check mark on my desktop app, I know everything is properly synchronized with the server.
I am constantly creating and editing content locally and counting on sync to work (usually on my desktop computer), or creating and editing directly in Nextcloud via the web UI.

There are also apps for mobile devices.
I’ll come back to mobile later in the following sections.

10.8.2. Object storage

 Nextcloud is able to use object storage for primary data storage.
This is an advanced topic left as an exercise to the reader.
I’ll assume primary storage on a local HDD set up by mario.

10.8.3. Security

A basic Nextcloud install appears to have excellent security.
The source is in heavy use and is backed by a solid company with a reputation that depends on their commitment to security.
They make it easy to lock down and vet (it is FOSS after all).
The defaults appear secure.
They follow best practices.
They have a public bounty program and threat model.

10.8.4. Detailed setup

 To confirm reproducibility of your Nextcloud server, destroy and re-create it (before you use it for real).
After you get it working once, stop it with dc nextcloud down.
Destroy all persistent data with sudo rm -rf /data/nextcloud.
That really deletes everything.
Re-provision with mario (run provision.sh again).
Follow the setup steps again, see Section 9.1.1, “Quick start”.

Read the official docs at /settings/help or docs.nextcloud.com.

Add apps at /settings/apps.
See Section 10.8.7, “Customization” for tips on how to roll out apps thoughtfully and which ones are worth your time.

Test configuring a mail server and sending an email at /settings/admin (Basic settings).

Add users at /settings/users.

Check logs for all containers related to Netcloud with dc nextcloud logs -f.

Check Nextcloud internal logs at /settings/admin/logging in the web UI or /data/nextcloud/root/data/nextcloud.log on the server.
These include specific Nextcloud internal server messages and are often more useful to me than the container logs.
If you see a warning about “1 error in the logs since DATE” (or perhaps a couple) at /settings/admin/logging, you can probably ignore it.
These initial logged errors appear to be harmless, possibly a result of some install-time race conditions.
It is still a good idea to review all logged errors.

Review “Security & setup warnings” at /settings/admin/overview.
You can ignore the warning ‟Could not check for JavaScript support. Please check manually if your webserver serves .mjs files using the JavaScript MIME type.” if this succeeds on your admin computer:

Listing 37. JavaScript fetch test (🏠 admin computer)
 curl -I https://cloud.example.com/apps/settings/js/esm-test.mjs

The warning is because the Nextcloud app container fails at a test to request a JavaScript test file, likely because of a DNS issue.
To fix it, the request must be able to work from within the Nextcloud app container.
In other words, this must succeed (return a successful HTTP response code and include the header content-type: text/javascript):

Listing 38. JavaScript fetch test (🚀 server)
 dc nextcloud exec app \
 curl -I https://cloud.example.com/apps/settings/js/esm-test.mjs

Some maintenance requires the occ tool (short for “ownCloud command”).
Run it with dc nextcloud exec --user www-data app php occ.

Add /data/video as an External storage.
Media files uploaded there will automatically appear in Jellyfin.
First, visit /settings/apps/featured and install the “External storage support” app.
Next, visit /settings/admin/externalstorages and install the “External storage support” app.

	
Folder name: Video

	
External storage: Local

	
Authentication: None

	
Configuration: /data/video

	
Set users, previews, sharing, and remaining options as desired.

Add /data/music as an External storage, similar to /data/video.

10.8.5. More maintenance tips

 Visit /settings/admin/overview periodically to check for system and security issues that may require manual intervention.
Perform any recommended maintenance on that page.
Ignore the Update section, it may disagree with Docker Hub.
Visit /settings/admin/logging periodically to review all server-side log messages.

Running dc nextcloud pull && dc nextcloud up -d (on the server) will pull the most recent image of github.com/nextcloud/docker with the stable release tag.
Using this tag will likely be stable enough for you and your users.
stable generally corresponds to the version they call previous at docs.nextcloud.com/.

You may opt to “pin” your Nextcloud to a more specific tag such as 27.1.5-apache.
This gives you the chance to review and test each upgrade.
You can pin a release tag in Nextcloud’s compose.yml where the image name appears, just trade stable for the tag you choose.
All available tags are listed at Docker Hub.

Nextcloud’s blog posts and marketing materials use different version names than the release versions from source control.
“Hub 6” on the blog refers to versions 27._._ in source control, “Hub 7” to 28._._, and so on.

Release cadence

A major release is shipped every four months.
The Nextcloud apps I care about seem to keep up with this pace, but it does feel a bit aggressive to me.
Developers need to modify their apps each time at least slightly, or heavily if breaking API changes occur.
Thankfully the Nextcloud team carefully documents changes to ease app maintenance for developers.

As a Steadfast sysadmin, be sure to check your /settings/admin/overview page before upgrading Nextcloud to make sure all the apps you use will work with the version you’re upgrading to.
You can override an out-of-date app with the “enable untested app” option under /settings/apps.
Sometimes this works.

Since four months seemed to me like a short window for major releases I started a thread about it.
Review their Maintenance and Release Schedule to make sure your current version is still supported.

10.8.6. Performance

 If you use mario to deploy Nextcloud, you’ll start with a nominally performant server suitable for a small handful of users, assuming you have sufficient hardware resources.
mario includes an author-approved selection of the recommended server tuning steps.

I’ve only had one performance issue in the years I’ve hosted Nextcloud (knock wood!), so I’ll mention it here.
I was seeing slow web requests along with lots of database activity.
This had me under the hood with MariaDB for a while.
They’ve since fixed the root cause so it isn’t a problem for new installations.

10.8.7. Customization

Nextcloud can be used as-is (see Section 10.8.1, “Basic install”) or heavily customized.
The simplest and safest way to customize is by installing an app from the built-in app store (/settings/apps), especially if an app is marked “featured”.
These Nextcloud apps are installed on the server, expanding the functionality of a base Nextcloud instance.

Here are some Nextcloud apps I’ve tried, what they do, and a ruling on whether they’re worth looking into.
Read “Worth your time?” as “Adam maybe tried this app and has shared his opinion whether others will find this particular app worth the effort to learn and maintain, based on his own experiences projected onto our possibly different use cases.”
Grain of salt, in other words.
When in doubt, start small (default Nextcloud install), and roll these out thoughtfully if you do at all.

Table 4. Nextcloud apps commentary

	Nextcloud App
	Purpose
	Worth your time?

	Antivirus for files

	virus scan uploads

	Yes. Note: uploads from desktop clients are not scanned for viruses.

	Analytics

	track and graph metrics

	Yes. Only for small/simple use cases though.

	Appointments

	easy 3rd party scheduling

	Yes. Requires careful calendar curation. Somewhat fiddly setup.

	Calendar

	manage meetings and appointments

	Yes. See also: Section 10.8.12.7, “Spurious event updated notifications”.

	Circles

	arbitrarily group users

	No opinion. I don’t have enough users to justify this.

	Collectives

	wiki or knowledge base

	Maybe. Looks like a useful way to organize a set of related documents. Requires Circles.

	Cookbook

	recipe manager

	Yes. Great at importing from web pages (thanks to standardized recipe data already present in HTML source). I wish it were better at printing/exporting though.

	Contacts

	address book

	Yes.

	Dashboard

	landing page

	No. I like to go right to my files.

	Deck

	kanban board

	No opinion. I tried it a little and it worked, I just don’t use kanban much.

	Draw.io

	diagram editor

	Yes.

	Duplicate Finder

	find and cull duplicate files

	No. Slow and opaque. I recommend rdfind instead.

	Electronic Signatures

	e-sign documents

	No. Requires a 3rd party service. I’d rather have drawn signatures. See Section 10.8.12.5, “Draw signature in forms”.

	End-to-End Encryption

	encrypt files server-side, decrypt with client

	No. Unnervingly buggy. Confusing UI/UX. See Section 10.8.13, “End-to-End Encryption”.

	Files

	file management, sharing

	Yes, although the “Versions” tab is not very useful.

	Forms

	Google Forms alternative

	Yes.

	Full text search

	search through all documents

	Maybe. Fast. Buggy. Likely dormant project. See Section 10.8.8, “Full text search”.

	Holiday Calendars

	easily add public holiday calendars

	Yes. The configuration for this app shows up under “Personal” → “Availability” for me, not “Groupware” (although the URL path is /settings/user/groupware).

	Maps

	maps and directions

	Yes. Grab a cup of tea if you have lots of photos with GPS coordinate metadata.

	Mail

	email

	No opinion. I tried it briefly and it choked on my bazillion Gmail messages. And yes, I do want to de-Gmail someday.

	Memories

	photos

	Yes. Requires Photos.

	News

	track blogs and news via rss/atom feeds

	Yes.

	Nextcloud Office

	edit spreadsheets, slides, etc.

	Yes. I don’t love this but I need it. Maybe that’s a “No”? Mobile apps for this are painful. See Section 10.8.11, “Nextcloud Office”.

	Notes

	simple markdown-based note taking

	Yes. There’s an excellent companion mobile app. Replaced Google Notes for me.

	Passwords

	password manager

	Yes. Warning: online only (requires connection to Nextcloud server).

	PhoneTrack

	location sharing and tracking

	Yes. UI is feature-rich and complicated. Traveled movement lines are cool.

	Photos

	photos, sorta

	No. Slow, clumsy, lacking features compared with other FOSS photo management software. Use Memories instead. Note that Memories depends on the Photos app.

	Polls

	simple polls

	Yes.

	Ransomware protection

	warns for bad file names on upload

	No. Too many false positives. Unmaintained.

	Recognize

	face recognition

	No.

	Suspicious login

	warn about suspicious IPs

	No. Too many false positives.

	Tasks

	tasks/todos

	Yes.

	Tables

	tabular data entry and API

	No. Not yet, although keep an eye on this as a potentially powerful and useful low-code platform.

	Talk

	video and text chat

	No. Works, just not as well as other video and text chat services/apps. I do use it for my chicken safety system and I see it improving a lot with each release. For now I recommend Signal instead.

	Temporary files lock

	avoid edit conflicts

	Yes.

	Text

	edit text documents

	Yes. I’m a huge fan of Markdown plain text documents, and Nextcloud handles these well. It has a nice web-based collaborative editor. I like pasting in rich text and letting the editor auto-convert it to Markdown. See also: Section 10.8.12.2, “Mobile text editing is hard” and Section 10.8.12.4, “Spurious web text editor conflicts”.

	Video converter

	transcode videos

	No. Cool idea but the project appears dormant.

10.8.8. Full text search

This app allows you to search through all content of all documents on your server.
The search syntax is hard to get right.
It uses a lot of CPU and is memory-hungry too.

The GitHub project repositories are pretty quiet. See:

	
github.com/nextcloud/fulltextsearch/pulse

	
github.com/nextcloud/files_fulltextsearch/pulse

	
github.com/nextcloud/fulltextsearch_elasticsearch/pulse

10.8.9. Mobile

Nextcloud works OK as the backend for a mobile device.
It can be your single reliable source of truth for contacts, calendars, tasks, and most everything else that matters on mobile.
You can open files and edit them, but the UI/UX is bad.
See Section 10.8.12.2, “Mobile text editing is hard” for a couple workarounds.

Besides the primary mobile app (called simply “Nextcloud”), there are other mobile apps made to work with Nextcloud apps.
Here are the ones I recommend.
I don’t have an iPhone so these are only Android apps.

Table 5. Recommended Nextcloud mobile apps

	Mobile app
	Works with Nextcloud apps
	More info

	DAVx5

	Calendar, Contacts, Tasks

	davx5.com

	Maps Geofavorites

	Maps

	github.com/penguin86/nextcloud-maps-client

	NC Passwords

	Passwords

	gitlab.com/joleaf/nc-passwords-app

	Nextcloud Cookbook

	Cookbook

	github.com/nextcloud/cookbook

	Notes

	Files, Notes, Text

	github.com/nextcloud/notes-android

	OpenTasks

	Tasks

	github.com/dmfs/opentasks

	Nextcloud Talk

	Talk

	apps.nextcloud.com/apps/spreed

Android devices usually ship with groupware (calendar and contacts) apps, or you can install your favorite ones.
DAVx5 handles synchronization of groupware data to and from your device.
DAVx5 is only necessary on Android, perhaps because iOS has better native WebDAV support.
DAVx5 is not needed on Murena phones (/e/ OS).

There are actually two Cookbook apps.
Either works fine for me.
I’m not picky, I just need to see the ingredients and directions.
Looks like the one by “Teifun2” is more popular.

Maps Geofavorites lets you easily save arbitrary GPS coordinates to the Maps Nextcloud app.
Handy for remembering where you parked your bike, for example.

Notes looks best configured in Grid View.

Talk…​ despite my own advice, I find myself using Talk anyway.
I like having my own chat server, I guess.
I am listing it here because I do actually use it, and to complain that I can’t read messages offline.
It is also under heavy development and improving lots with every release.

These are just a few examples.
Since you’ve got all your data and Nextcloud always uses open formats, you can ride the wave of improvements and enjoy what works best.
For example, I just started using RunnerUp.
When I save my tracks in Nextcloud, they automatically show up in Maps.
Nice!

10.8.10. Nextcloud vs. ownCloud

At first glance it’s a bit difficult to tell the difference between Nextcloud and ownCloud.
This follows since Nextcloud started as a fork of ownCloud.

So why should you choose one over the other?
A healthy FOSS project is generally also an active project, so one way to guide your decision is by comparing activity metrics on GitHub.
See owncloud/core activity and nextcloud/server activity.
Based on those two sets of metrics it appears Nextcloud is thriving and ownCloud is dying.

Another interpretation is that ownCloud has a smaller and slower-moving core codebase.
More work is necessary to make a truly rigorous comparison.

See also: Traits of Good Self-Hosted Services and Traits of Bad Self-Hosted Services in Section 7.1.1, “Choose services”.

10.8.11. Nextcloud Office

nextcloud.com/office/ gives some strong hints how the company behind Nextcloud wants us to think of “office” and their plans for it as a suite of related tools.
They clearly intend a holistic, integrated office experience, and Nextcloud can be configured to be used in this manner.
nextcloud.com/office/ covers editing office documents (rich text and spreadsheets) collaboratively, along with uses for the Notes, Collectives, and Tables apps.
It provides some clever and useful workflow ideas.

Given that wide a scope, groupware should be part of “office” too, so instead let’s for now focus specifically on collaborative editing of office documents.
Doing this within Nextcloud requires an app called Nextcloud Office as well as a separate backend service, either Collabora or ONLYOFFICE.
My strong preference is for Collabora, in line with Section 7.1.1.1, “Good for self-hosting”; despite fewer stars on GitHub, it appears Collabora development is flourishing while ONLYOFFICE is stagnant (although it’s hard to tell which of the many ONLYOFFICE repositories on GitHub are relevant here).

10.8.12. Various issues

 Here’s a selection of my favorite bugs and feature requests for Nextcloud.

Spinner on mobile

 When you first open the Nextcloud mobile app, a loading spinner shows up in front of a cached view of whatever files and folders existed the last time you use the app.
If you ignore it and tap to navigate your way into a folder or open a file, you may end up tapping a different one than you intended because the folder order can change as you are tapping the screen.

Workarounds:

	
wait until the spinner completes (usually takes me about one second)

	
reduce chance of reordering with “A - Z” or “Z - A” sorting instead of “Newest first” or “Oldest first”

Mobile text editing is hard

Nextcloud makes it easy to get to your stuff via mobile devices, but editing is a pain.

This is not a Nextcloud-only problem; I find all mobile text entry and editing cumbersome.
This applies to email, plain text, Markdown, and office documents.

In Nextcloud-land, one workaround to improve plain and Markdown text entry is to use the Notes app on Android or iOS.
It has separate editing and viewing modes and more aggressive synchronization.
With Notes you have a better chance of up-to-date data and fewer conflicts.

Another workaround is to use Markor.
Install that app, then:

	
In the Nextcloud mobile app, “Download” or “Sync” the file you wish to view or edit locally.
This caches a copy on your phone.

	
In the Nextcloud mobile app, choose “open with” for the file.
Should open instantly.

	
If you make changes to the file, save it, then manually “Sync” the file in the Nextcloud app.
It appears local changes like these never make it to the server otherwise.

See jenson.org/text/ for background on why mobile text editing is a complex and multifaceted problem.

Cumbersome mobile setup

 To sync calendars, tasks, and contacts with your phone’s storage of same on Android, you must install and configure the 3rd party DAVx5 app.
I don’t know why DAVx5 is required, but Murena figured it out for me.
Their Android-derived /e/ OS includes native support for Nextcloud accounts, removing the requirement for DAVx5.
Users with iOS and other OSes besides Android can sync groupware-related data without DAVx5.

Spurious web text editor conflicts

 Collaborating on plain text and Markdown text files sometimes results in spurious conflicts.
Editing is interrupted before it starts, and the web-based text file editor shows you two versions of the file side by side.
The left side is labeled “Use current version”, and the right says “Use the saved version” (or equivalents for your locale or specific client).

Apparently the browser has a saved copy in local storage or something that gets loaded first and considers it the “current” version.
Then it loads the one on the right and calls it the “saved” version, and if they differ you get to choose.

Workaround: pick the one on the right.
That’s the latest and greatest copy as it exists server-side.

Why the…​ never mind, just pick the one on the right.
If you’re curious and want to dig in deeper, follow these links:

	
Shared text file is not up-to-date with saved file

	
Changing File from Desktop leads to conflict in browser, even if browser was not doing any changes

	
Text: document current vs. saved version (by yours truly)

Related desktop client bug: Nextcloud-Client creating conflicts when it should not.
Conflicts seem to appear in cases where there shouldn’t be any.
Workarounds: wait 10 seconds or so between saves until the desktop client syncs and returns to idle (roll your eyes while you wait).
Also, check out the Temporary files lock app for semi-automated advisory locking (e.g. quickly communicate “gimme a minute, I’m editing that Markdown text file”).

Draw signature in forms

 Forms are handy for gathering simple minimally-structured data…​ surveys, RSVPs, stuff like that.
The data are just dumped into a spreadsheet.
With a signature field Forms could be used to add a drawn signature to a form like a contract or waiver.

There are extant Nextcloud online signature apps that incorporate digital signatures.
I don’t want or need digital signatures, especially since they appear to rely on 3rd party services.
I really just want a low-tech image that looks like a drawn signature at the bottom of a page.
It doesn’t even need to be wet ink.
If you want that too, vote for or help with github.com/nextcloud/forms/issues/947.

OpenSign and DocuSeal are two alternative FOSS self-hostable apps supporting drawn signatures.

Release script missing from source

 Nextcloud is FOSS, although some release scripts are held back.
They may or may not be required to release those, I don’t know.
I hope they do decide to release them, for the same reasons the rest of Nextcloud is FOSS.

Spurious event updated notifications

 The Calendar app is quite useful and perhaps the most heavily used by me and my users.
I have grown to expect one particular erroneous “event updated” notifications, possibly caused by calendar client/sync issues.

On one shared calendar (with many clients) I often get notifications that so-and-so “updated event XYZ in calendar ABC”, but the only actual thing that occurred is that one of the clients just sync’d (or perhaps made some innocuous change to an event) and Nextcloud thinks it was a meaningful update.
At least, I think that’s what’s happening…​ some changes (like changing the event’s date) do show up with the old and new values made explicit.
As an aside, I do like this “explicit diff” behavior showing the exact changes made to an event’s Title, Time, Location, or Description.

10.8.13. End-to-End Encryption

 End-to-End encrypted folders seems like a great idea.
There’s a Nextcloud app for this and I recommend you avoid it.

It seems close to working, but it feels like early-release software.
The UI/UX is confusing, and I ran into a dealbreaker bug that left files decrypted server-side.
Furthermore, sharing doesn’t work, there’s no web client, the roadmap is unclear, and keys are always stored on the server (these are thankfully stored encrypted).

Proceed carefully with the End-to-End Encryption Nextcloud app.
Review known issues, make sure you can live with all those, then test it out thoroughly using a throwaway/sandbox Nextcloud instance.
Make sure it works with all clients you plan to use it with (e.g. desktop, mobile).

10.8.14. AIO installer

Among the myriad Nextcloud install methods, there’s a relatively new and interesting AIO (“all-in-one”) installer (nextcloud.com/all-in-one).
It’s free for an instance with less than 100 users.
The AIO takes a different approach than mario, it configures and manages multiple Nextcloud-related service containers for you.
I recommend the mario method instead for its flexible and empowering experience of learning how to add and manage individual containers yourself.

See the AIO readme for more information.

11. More resources

 Visit selfhostbook.com for all supporting material including source code for this book and mario.

	
Source code

	
Contact information

Patches and feedback are most welcome.
This book is just a part of something big and I’m glad you’re a part of it too!

11.1. Support

 Here are a few ideas for when you get stuck.

	
Ask for help in forums and chats related to a product/project.

	
If you’re confident you’ve found a bug, file an issue with the product/project.

	
Ask other readers for help.

	
Try your luck in semi-moderated public places.
Don’t expect much from these, although you may get lucky from time to time.

	
selfhosted subreddit

	
homelab subreddit

	
Nextcloud chat

	
self-hosted chat

	
Hire me to help you out.

11.2. Alternatives to mario

 If you’re in a hurry, you can find one-click-install appliances with many ready-to-go apps.

FreedomBox is one promising contender in this space.

There are also many shortcuts and frontends for self-hosting.
For example, openmediavault looks like a cool way to build a DIY (do it yourself) NAS (network attached storage).

And there are countless more of these kinds of partial or full-service self-hosting solutions, such as:

	
YunoHost

	
Not considered, I prefer always using containers.

	
CasaOS

	
New, interesting, very little documentation.

	
Runtipi

	
New, interesting, uses Docker Compose and Traefik.

These look intriguing, and it’s hopeful (and overwhelming) to see many options in this space.
I evaluated these only just enough to get the sense they didn’t fit my wants and needs.
I’m a crotchety old man and I’m reluctant to change, but I still do, sometimes.
If and when I adopt something new, it must pass a high bar, ideally most or all these tests:

Checklist: Self-Hosting Solution Viability

	
Will it work for years with minimal tinkering?

	
Is it easily extensible?

	
Do I trust the maintainers?

	
Does it employ technologies I’m familiar with?

	
Does it weaken or strengthen security by changing my attack surface?

	
Does it add features/value I need/want, beyond what I’m already able to do?

	
Will it help my users?

	
Will it help me learn what I need/want to learn, and safely take care of the rest for me without my needing to learn more?

	
Will it help me figure out why I made a change to one of my services two years ago?

	
Does it phone home, using telemetry or my data in a way I don’t approve?

	
Does it hold back “enterprise” features I need, even for my scaled-down use case?
Is it annoying about this, reminding me often?

	
If I want paid support, is it available?

	
Is it popular?
Has it been around a while, and do I expect it to endure?

See also: Traits of Good Self-Hosted Services and Traits of Bad Self-Hosted Services in Section 7.1.1, “Choose services”.

After brief reviews, I find existing self-hosting solutions generally:

	
are new and immature

	
lack proper documentation

	
do too much: try to solve many problems without sufficient inertia/resources to maintain it all

	
don’t do enough: just another Linux distro with an added layer to discover and install apps

	
make opinionated tech choices I don’t agree with

	
have a limited list of apps in their app stores and exclude the ones I want

	
have too many apps in their app store, without good ways to compare quality, privacy, features

	
are GUI (graphical user interface)-focused where I prefer working on a command line

Still, check ’em out.
They might work better for you if you don’t need the level of power and control provided by this book.
By the time I publish, they (or some new contenders) might grow to overcome my approach.
Please let me know what you discover.
If I missed something, I’d love to learn about it!

Here are some more related and interesting self-hosting solutions worth researching further:

	
Ansible NAS

	
Clace

	
Cosmos Cloud

	
DockSTARTer

	
HomelabOS

	
Start9

	
MicroCloud

	
LibreServer

	
LinuxServer.io

	
NextcloudPi

	
UBOS

12. Discussion topics

 Here are some conversation starters for a class or small group.

	
What services do you run?
Why?
For whom?

	
What are some considerations when choosing between public cloud and on-premise self-hosting?

	
Compare and contrast different options for bare metal self-hosting hardware in terms of setup cost, power usage, and expandability.

	
Why does the author encrypt all network traffic, even in a closed LAN?

	
Review this book for poor security practices.
How might it be improved?

	
Why is privacy important, especially with digital information?

	
What’s the best part about self-hosting?

	
What are some pitfalls of self-hosting?

	
What is the future of self-hosting?

	
What is the ideal number of users to support with a single self-hosted server?

	
Is the Steadfast method useful for larger groups, big families, church congregations, schools, businesses, and governements?
Why or why not?

	
How might this book be adapted for:

	
intermittent power

	
intermittent network

	
local-only network

	
clustered hardware

	
Consider FOSS with respect to human attention and focus.
Contrast with non-FOSS.

	
What approaches in this book may be conceptually dangerous or misleading?
Why?
How could they be improved?

	
Summarize this book in one sentence.

	
How might you detect if your server has been compromised?

13. Exercises

 Exercises for individual practice and study groups.

	
Stand up a service besides those included with mario using an existing image.
For example, a dashboard.

	
Build a custom image.
Hint: use docker build or Buildah.

	
Run a container using your custom image.

	
Create a service (using your container) to know if it is time to reboot your server.
Hint: check if /host/var/run/reboot-required exists.

	
Stand up a second Nextcloud service for experiments.
Use it to test out the latest release or a custom app.

	
Try Nextcloud with object storage for primary storage.

	
Adapt this guide to a Linux distribution besides Ubuntu.

	
Help resolve a bug mentioned in this book.

	
Set up periodic automatic offsite backups.

	
Add a GPU to your server.

	
Enable GPU transcoding in Jellyfin.

	
Sign the open letter at Public Money, Public Code because software paid for with taxes should be FOSS.

	
Aggregate logs.

	
Pick a Docker container that doesn’t need to be able to initiate outbound network connections.
Prevent it from doing so and prove to yourself it works.

	
What if the server won’t boot?

	
Describe troubleshooting steps, in detail.

	
Make a plan for system recovery when it fails to boot.

	
Set up single sign-on.

	
Set up Fail2Ban.
Feed it logs from various services.

	
Set up Suricata network analysis and threat detection.

	
Try running containers with podman.

	
Read up on other ways to isolate processes, e.g. FreeBSD jails and chroot.

	
Contribute to mario.

	
Move secrets used by mario into an Ansible vault or a self-hosted service intended for managing secrets.

	
Adapt mario to use podman.

	
Adapt mario to use Kubernetes.

	
If you have a dynamic WAN IP address, create or use an existing dynamic DNS update client container.

	
Stand up a mail relay container such as github.com/crazy-max/docker-msmtpd or github.com/namshi/docker-smtp.
Allow all mario-managed services to send email through this relay.

	
Stand up your own DNS server.

	
Reorganize mario services into distinct Ansible roles.
Upload the roles to Ansible Galaxy as a playbook bundle.

	
Traefik’s Docker integration has security implications.
Test these risks against your security considerations following Section 6.2.3, “Threat model”.
If you should mitigate this risk based on your threat model, harden mario so even if Traefik were compromised it would not compromise the whole server.
Review the Traefik docs on this topic and tearfik-hardened to get some ideas.

	
Modify mario to always run containers as unprivileged (non-root) users.

	
Use appropriate ownership and permissions for persistent container data.

	
Set up Nextcloud Talk high-performance backend.

	
Uncomplicated Firewall and Docker do not get along well.
Work around this and share your solution with others.

	
Try Nix and NixOS.

	
Roll your own Linux distro.

	
Build, configure and deploy an OPNsense firewall.

	
Set up your own headscale VPN/tailnet for remote LAN access.

	
Improve preview/thumbnail generation in Nextcloud.

	
Research first: Will you and your users benefit from the change?
Are there security implications?
How does default preview generation work?
What file types are supported by the default previewer and other previewers?
How much disk space is used?
How fast is it, subjectively and objectively?
What maintenance will it require once enabled?

	
Create a test bed with a clean install and many preview-able files of various file formats.
Find or write code for recording objective performance metrics (e.g. time it takes to generate previews for a folder containing many files of various types).
Consider both client- and server-side performance.
Keep manual testing notes (subjective measurements).

	
Compare Preview Generator, Imaginary, and any other extant previewers.

	
Establish baseline performance metrics before making any changes.

	
Enable one or the other, get timings, repeat for each previewer.

	
Evaluate the change.
Is it noticeable?
Does your timing script show any difference?
How much disk space is used for previews?
How challenging was this to enable?

The detailed steps in the last exercise suggest what may be required in general to achieve better outcomes.
I’ve omitted them from the other exercises for brevity.
Please apply similar detailed steps elsewhere as desired.

Afterword

 In the words of Scott McNealy, former CEO of Sun Microsystems:

Open source is free like a puppy is free.

Everybody loves a puppy, right?
Right??
I sure hope so.
Because—​fair warning—​if you spend too much time with your “puppy” (self-hosting, FOSS, etc.), your partner will show up with an actual puppy.

[image: puppy]

Figure 17. Open Source is free like a puppy. Pictured: actual puppy.

If your problem is that cute, I suppose it’s not too a bad problem to have.
I hope you find what you need to keep your puppies happy!

Finally, I’d like to share an Ursula K. Le Guin quote.
According to her:

A book is just a box of words until a reader opens it.

Dear Reader, this book exists because you exist.
I hope it serves you well.
I am humbled and grateful for your support.
Thank you, thank you, thank you.

Acknowledgments

 Sometimes I feel more like a birthday boy than an author, accepting gifts from so many generous people.
I truly couldn’t have done this alone and I am so, so grateful for you.

Thanks to Eva for more than I could ever account for here, from “What if it rains?” to leading by learning and fearlessly doing.
For supporting my dreams, including this book: your several inspiring rounds of thoughtful code review, technical critique, developmental editing, copy editing, proof reading, and line editing.

Thanks to my daughter for your fantastic illustrations.

Thanks to Deb Nicholson for writing the meaningful Foreword.

Thanks to my family and friends for tolerating my protracted FOSS self-hosting boondoggles, including this book.

Thanks to Pro Git 2, my inspiration to switch to Asciidoctor.

Thanks to the contributors to the myriad FOSS programs I used to create this book, especially John MacFarlane and the Pandoc team, Dan Allen and the Asciidoctor team, and Bram Moolenaar and the Vim team (rest in peace, Bram).

Thanks to Rob Smith and all #underlug for help with hardware, networking, Ansible, and Traefik.

Thanks to the “Deadbeat Dads” Bryan Daisley and Rob Floberg for your invaluable feedback.

Thanks to all my beloved beta testers, including Andrew Davidson, Brendan Kidwell, Eva Monsen, Don O’Neill, and Lenny Wondra.

Thanks to Bob Nystrom for your mind-expanding design review.

Thanks to Lenny Wondra for your deeply effective tech review and editing.

Thanks most of all to my wife and kids for supporting and believing in me.
For all the cooking, talking, listening, art, coding, math, music, and love.
Aren’t we lucky?!

Glossary

 Here’s a list of definitions for some of the more non-obvious terms I use in this book to clarify how I use them.
These stick to common use as much as possible.
Specialists in computer science, security, administration, networking and so on will have more nuanced definitions.

	
AI

	
Artificial intelligence.

	
API

	
Application programming interface. Provides a way to interact with a service from software. Useful for writing apps and integrations.

	
attack surface

	
Total of possible attack vectors. Fewer is more secure. Example: closing all but the ports you need open reduces yours.

	
backend

	
I use this term to refer to either a service (e.g. a database) or server. It’s something you more frequently interact with indirectly, say, via a frontend like a web app or mobile UI.

	
bare metal

	
Physical nearby computing resources, as opposed to rented compute time on someone else’s hardware. Used in this book primarily to indicate hardware autonomy.

	
block storage

	
Cloud storage option with direct filesystem access including files and folders. Used directly/natively/locally from an OS. Size is relatively fixed and determined at creation time.

	
bot

	
Short for robot. Software performing autonomous tasks such as responding to chat requests or attacking vulnerable servers.

	
cattle vs. pets

	
Highlights two distinct sysadmin approaches to systems/services. Cattle are automated, ephemeral, and hopefully immutable. Pets are managed manually, stateful, and long-lived.

	
cert

	
Shorthand for HTTPS encryption certificate.

	
change management

	
The means and methods of transitioning a group of people from one set of tools and processes to another.

	
cloud

	
An ambiguous amount of remote hardware. Scalable, programmable, and networked. “The cloud” or “public cloud” is someone else’s hardware while “personal cloud” is your own.

	
cluster

	
Collated collection of machines treated as a single machine to achieve higher scale computing power.

	
compute

	
Noun: CPU or GPU resources expended when running software services.

	
container

	
Running instance of an image. Containers may also be referred to as “guests”, although this is more commonly used to describe VMs.

	
CPU

	
Central processing unit. The main brain of the computer; the place where most of the math happens.

	
data

	
Noun, plural. Yes, I use the annoying plural form! Sorry, old habit.

	
data sovereignty

	
Full control of your data. For example, having original copies of your files.

	
deploy

	
Prepare a service for use. Typically involves building or copying files before a service is started.

	
dogfooding

	
Being a user of something you also created and/or maintain. “Eat your own dogfood.”

	
DHCP

	
Dynamic Host Configuration Protocol. This is one way computers get IP addresses and related networking settings.

	
DIY

	
Do it yourself. Said of activities involving some amount of learning and tinkering you’d otherwise pay for. Cooking, for example. Also: self-hosting.

	
DNS

	
Domain Name System. Maps domain names to IP addresses.

	
domain name

	
How a server, service, or group of services are identified, e.g. example.com.

	
DRM

	
Digital restrictions management. Ancient, evil technology designed to prevent unapproved consumption of content. Probably used for surveillance too.

	
egress

	
Any outbound data transfer or download, in public cloud terms.

	
entrypoint

	
How traffic enters the Traefik reverse proxy; network ports.

	
firewall

	
Means of controlling network traffic between computers.

	
fork

	
Verb: to split one software project into two. Noun: a derivative software work. The fork diverges from the original (otherwise it would simply be a copy). One or many software projects may succeed the original. Forking software is a useful and common activity.

	
FOSS

	
Free and open-source software. An acronym designed to unite the goals of the FSF and the OSI.

	
FSF

	
Free Software Foundation. They strongly defend the “F” in FOSS.

	
frontend

	
The UI for a system or service.

	
full-disk encryption

	
When an entire storage area is cryptographically protected.

	
GB

	
Gigabyte. 1,0003 (1,000,000,000) bytes for HDDs, or 1,0243 (1,073,741,824) bytes for RAM.

	
good, fast, and cheap

	
Used with a wink in this text because typically we must pick two.

	
Good Thing

	
A hand-wavy way of saying something is self-evidently wonderful.

	
groupware

	
Software for group collaboration. Loosely: mail, calendar, and contacts. Sometimes includes collborative editing of office documents and spreadsheets.

	
GPU

	
Graphics processing unit. Originally intended for graphics. Found to be useful for many specialized compute workloads including transcoding video.

	
GUI

	
Graphical user interface.

	
HDD

	
Hard disk drive. Stores ones and zeros on spinning metal platters.

	
homelab

	
A physical or conceptional space for do-it-yourself flexible systems administration leaning and experimentation. A homelab is not quite what this book describes, it is more of an at-home hardware, software, and electronics maker-space. A Steadfast server (or “personal cloud”) should be nearly always online and useful—​at least the user-facing part. Some self-hosters call this environment “homeprod”. Far from this level of hair-splitting detail, I’ll use “homelab” as a shortcut for “self-hosting setup” and/or “homeprod”.

	
host

	
The computer where Docker containers run. Also called a “server” in this text.

	
hostname

	
Name for a single server/computer/device.

	
HVAC

	
Heating, ventilation, and air conditioning.

	
idempotent

	
An operation which enacts changes only until an end state is reached. Repeating the operation has no effect once the end state is reached. For example, updating an OS. After the OS is up to date, updating again will cause no changes to the list of installed packages (assuming no new updates become available while updating).

	
image

	
A filesystem with code and dependencies necessary to run a container.

	
immutable

	
Doesn’t change. For example, a particular Docker image. A container instantiated from that image can be modified, but the image cannot; a new image must be built.

	
IPMI

	
Intelligent Platform Management Interface. Used for remote server management including reboots and OS installs.

	
IPS

	
Intrusion prevention system. Mitigates the risk of penetration.

	
isolation

	
For software services: Keep separate from others. Eases sysadmin tasks such as preventing dependency version conflicts.

	
ISP

	
Internet service provider.

	
kernel

	
The part of the OS that talks directly with hardware.

	
LAN

	
Local area network. For example, the network used by computers and devices to talk with each other inside your home.

	
LFNW

	
LinuxFest Northwest. Annual conference in Bellingham, Washington dedicated to serving and connecting open source communities. Established in 2000.

	
Linux

	
The most popular server OS. Also works fine on a desktop or laptop. The old me would have insisted on calling it “GNU/Linux” or “a Linux distribution”. A lot has happened since then, and I’ve come to believe “Linux” is enough to describe the OS used for self-hosting in the context of this book.

	
low-code

	
High-level application development platform with reduced focus on traditional programming. Typically provides a GUI and requires less files with configuration and code. Useful for prototyping or replacing some simpler data entry and analysis applications.

	
LTS

	
Long-term support. A stable software release, supported for many years.

	
mario

	
Provisioning system included with this book to assist with learning how to set up and maintain your own server. Consists of scripts, documentation, and configuration files.

	
NAS

	
Network-attached storage. A server made for storing data. Usually has several HDD bays in a non-rackmount box-like form factor. Likely has less CPU and RAM (and less power usage) than what I describe in Section 7.2.1, “Server”.

	
NIC

	
Network interface card, also called a network adapter. Hardware for receiving and sending data over a network.

	
object storage

	
Relatively unlimited and typically remote cloud storage option. Actual data are abstracted: backups and structured access require special services, indexes, and software.

	
OCR

	
Optical character recognition. The process of converting images of text to actual text.

	
OOB

	
 Out-of-band (management). A means of remote low-level server control including power cycling and console interaction, typically provided by an independently powered and networked embedded computer. See also: IPMI.

	
OS

	
Operating system.

	
OSI

	
Open Source Initiative. More concerned with the “OSS” of FOSS.

	
PHP

	
PHP: Hypertext Processor. Programming language built for the web.

	
PoE

	
Power over ethernet. Utilizes an ethernet cable for electricity as well as data.

	
port

	
Along with an IP address, a number used to connect to a service. Reserved port numbers such as 80 for HTTP are listed in /etc/services.

	
partition

	
Delineated section of a HDD or block storage, formatted with a filesystem such as ext4 or ZFS.

	
port forward

	
Router configuration to send traffic for a particular port to a computer inside a LAN.

	
process

	
Instance of running software. Note that “running” processes are described in more detail by a lower-level state such as running, sleeping, idle, waiting for I/O completion and—​my personal favorite—​zombie.

	
provision

	
As in, “provision a server”. Set up a machine or otherwise bring it into alignment with a known/good configuration.

	
RAID

	
Redundant array of inexpensive disks. Allows flexible use of multiple drives for redundancy and/or speed, as desired.

	
registrar

	
Domain name vendor. May also offer other name- and hosting-related services.

	
reproducible

	
Able to be repeated following specific steps. E.g. “repro” a bug or “a reproducible [software] build”. If two people try to repro a bug, they should have the same experience. If two people each build an image from the same Dockerfile, they should produce the same image. In practice, bug repros and build products are close enough and never exactly the same.

	
reverse proxy

	
Networking software for filtering and directing traffic. In a self-hosted context, useful for SSL termination and for running several self-hosted web services with different domain names with a single IP address.

	
router

	
Network device used to handle traffic at the boundary between networks such as a WAN and LAN. A SOHO router typically also provides various other functions including DNS, DHCP, switching, firewalling, and Wi-Fi. See: port forward. A Traefik router is something different: this is a software logic connecting entrypoints to services. See Section 6.6.1, “Traefik architecture”.

	
runtime

	
The period of time when a software is running; when a set of machine instructions becomes a running process. Also used to describe a set of tools/libraries to facilitate same. May appear as “runtime environment” in the latter form.

	
SeaGL

	
Seattle GNU/Linux Conference. Held yearly since 2013.

	
server

	
A computer that generally stays powered on and uses networking for interaction instead of a monitor, keyboard, or mouse. Also called a “host”.

	
service

	
A long-running process used by other local and remote processes to do something useful.

	
SOHO

	
Small office / home office.

	
source control

	
A system for tracking changes in source code along with who made the change, why, and when. Git is one such system.

	
source of truth

	
The authoritative (home for a) document, perhaps among some number of available choices/copies.

	
SSD

	
Solid-state drive. A hard drive that doesn’t spin.

	
SSH

	
Secure Shell. Provides encrypted remote command line access to a server.

	
SSL termination

	
Accepting encrypted traffic and passing along unencrypted traffic. Act performed by Traefik reverse proxy in a mario-provisioned server. More accurately and less often referred to as “TLS termination”. Actual SSL is deprecated.

	
sysadmin

	
Portmanteau of “systems administrator”. A party responsible for the upkeep of a computer system.

	
threat model

	
Analysis of risks and defenses of digital assets.

	
TB

	
Terabyte. Like GB, can be either base-10 or base-2, so: 1,0004 (1,000,000,000,000) bytes for HDDs and 1,0244 (1,099,511,627,776) bytes for RAM.

	
TLD

	
Top-level domain. For “example.com”, “.com” is the TLD.

	
UI

	
User interface. The means of interaction between a user and a system, e.g.: a web site or mobile app. Often considered along with user experience and notated “UI/UX”.

	
UPS

	
Uninterruptible power supply. A battery that sits between your server and an outlet, often with extra features such as a power outage alarm or surge suppressor.

	
UX

	
User experience. The nature of interaction between a user and a system they are using. Includes ease of use and steps involved to complete a task. Often considered along with user interface and written as “UI/UX”.

	
volume

	
Docker facility to mount a folder on the server to a folder inside a container. This is a common means of persisting container data that would otherwise be ephemeral.

	
VM

	
Virtual machine. OS isolation technique simulating nearly all aspects of hardware including power, input, and output.

	
VPN

	
Virtual private network. Useful to “teleport home” and behave (from a networking perspective) as if you are inside your home LAN.

	
WAN

	
Wide-area network. Everything outside your LAN / home network / router.

	
ZFS

	
A filesystem with many advanced features such as encryption, bit rot mitigation, journaling, volume management, and snapshotting. Used to stand for Zettabyte File System.

Cross references

 Here are lists of links to significant blocks of titled content.

Figures

 Figure 1. Early SeaGL crew. From left to right: Salt, Deb, Patch (with french fry), Adam, Rob. Not pictured: Chris, Jesse, Bri, Lisa, and many more.

Figure 2. Server in the shape of a loaf of bread.

Figure 3. Screenshot of an email from YouTube content team having removed my chicken coop camera video.

Figure 4. One absolutely upstanding, hard-working, law-abiding chicken.

Figure 5. Screenshot of a YouTube legal audit for my old API client.

Figure 6. View inside the server showing two empty PCI-E card slots.

Figure 7. Layers of a Steadfast system. From the bottom, hardware: bare metal, filesystem: ext4 for / and optionally ZFS for /data, OS: Ubuntu LTS 64-bit server, container runtime: Docker, containers: Nextcloud file sharing app, Jellyfin media server, Wallabag article reader.

Figure 8. Traefik architecture diagram showing how a request reaches a service. From the MIT-licensed Traefik source code. Credit to Peka for the gopher logo, licensed CC-BY-3.0.

Figure 9. DIY rackmount server attached to garage ceiling. It’s fun to look at and is out of the way, but I need a ladder for maintenance and it weighs about 50lbs.

Figure 10. Bird perched on server.

Figure 11. WAN into LAN traffic flow diagram.

Figure 12. Nextcloud Files app screenshot showing files, folders, and share buttons.

Figure 13. Jellyfin screenshot showing metadata for a movie. Big Buck Bunny is licensed CC BY-3.0 by the Blender Foundation.

Figure 14. Wallabag screenshot showing unread articles view.

Figure 15. Scratch screenshot showing a new empty project.

Figure 16. Pi-hole DNS traffic flow diagram.

Figure 17. Open Source is free like a puppy. Pictured: actual puppy.

Tables

 Table 1. Typographical conventions

Table 2. Example tally of services to hardware resources

Table 3. Purposes of default mario services

Table 4. Nextcloud apps commentary

Table 5. Recommended Nextcloud mobile apps

Sidebars

 Self-hoster security tips

Traits of Good Self-Hosted Services

Traits of Bad Self-Hosted Services

Checklist: Monthly Maintenance

Checklist: Yearly Maintenance

Checklist: Self-Hosting Solution Viability

Code snippets

 Listing 1. Example code snippet (🚀 server)

Listing 2. Traefik configuration snippet (🏠 admin computer)

Listing 3. Nextcloud configuration snippet (🏠 admin computer)

Listing 4. ZFS setup (🚀 server)

Listing 5. show ZFS details (🚀 server)

Listing 6. ZFS mount on boot setup (🚀 server)

Listing 7. upgrade packages (🚀 server)

Listing 8. check PSI (🚀 server)

Listing 9. example backup script (🚀 server)

Listing 10. line to add to hosts file (🏠 admin computer)

Listing 11. test ping server (🏠 admin computer)

Listing 12. customize OpenSSH client configuration (🏠 admin computer)

Listing 13. SSH host fingerprint prompt (🏠 admin computer)

Listing 14. show SSH host public key (🚀 server)

Listing 15. install SSH key on server (🏠 admin computer)

Listing 16. successful SSH to server (🏠 admin computer)

Listing 17. mario first run (🏠 admin computer)

Listing 18. mario first run output (🏠 admin computer)

Listing 19. mario second run output (🏠 admin computer)

Listing 20. naive Route 53 policy

Listing 21. hosts file with service names (🏠 admin computer)

Listing 22. start a service in its folder (🚀 server)

Listing 23. start a service, explicit configuration file (🚀 server)

Listing 24. start a service with dc (🚀 server)

Listing 25. typical Traefik logs, edited for brevity (🚀 server)

Listing 26. start all services ad-hoc Bash script (🚀 server)

Listing 27. example DNS tests

Listing 28. tiny test service config (🚀 server)

Listing 29. start tiny test service (🚀 server)

Listing 30. force Wallabag database migration (🚀 server)

Listing 31. example LocalAI service config

Listing 32. label from Traefik configuration allowing only LAN access

Listing 33. enforce SSH public key auth (🏠 admin computer)

Listing 34. Ansible handler to restart SSH (🏠 admin computer)

Listing 35. SSH server config lines (🏠 admin computer)

Listing 36. patch for WAN access to Nextcloud (🏠 admin computer)

Listing 37. JavaScript fetch test (🏠 admin computer)

Listing 38. JavaScript fetch test (🚀 server)

EPUB/img/squeaky-clean-chicken.png

EPUB/img/wallabag.png
fex

Unread

With annotations

All entries

Tags

Unread entries

There are 5 entries. (=

opinion
1l /] | T
LT L
How to Beat Procrastination H How Rich is Too Rich? H
waitbutwhy.com samharris.org
@19 min () 20240506 v X i @6 min () 2024-05-06 S v i

New Nextcloud health app doesn't sell your H Inside the Seattle Police hackathon: A H

data substantial first step

nextcloud.com geekwire.com

@6 min () 20240506 v X i @5 min () 2024-05-06 S v i
$400,000

50

Writing a book: is it worth it?

[

EPUB/img/YT-audit.png
Periodic Audit required for continued access to YouTube API Services

YouTube API Operations noreply@youube com>
tome v

D YouTube March 2023

Periodic Audit required for continued access to YouTube API Services

We've identified you as a creator, owner, or editor on one or more Google
Cloud Platform projects which have been granted access to the YouTube
APl Services:

« Project chicken-176

To verify that all use of the AP! is in compliance with the Terms of Service
(including the Developer Policies), we are conducting a periodic audit of
API developers. Please complete the audit form, linked below and select
"I have been selected for a Periodic Audit', within the next 30 days to
ensure continued access to the services.

Note: A single periodic audit form should be submitted per use case. If
your project(s) have different use cases, please submit separate periodic

audit forms.
EN AUDIT FORM

Thank you for helping us protect the YouTube ecosystem.

Google LLC d/b/a YouTube, 901 Cherry Ave, San Bruno, CA 94066

You have received this mandatory service announcement to update you about important changes
toyour account

EPUB/img/jacket/front-cover.png
STEADFAST

SELF- o

HOSTING o 4
0 o @8
“-?'Q)'3.,

RAPID- ,(@° - @ *°@o°
RISE o

PERSONAL

EPUB/nav.xhtml

Table of Contents

		Colophon

		Foreword

		1. Introduction

		1.1. Welcome

		1.1.1. Prerequisites

		1.2. Supporting the author

		1.3. Book version

		1.4. Copyright and license

		1.4.1. Copy this book

		1.4.2. Copy this book’s code, too

		1.5. Disclaimer

		1.6. Style

		2. Background

		2.1. Who am I?

		2.2. Why did I write this book?

		2.3. What’s with the title?

		2.3.1. Steadfast Self-Hosting

		2.3.2. Rapid-Rise Personal Cloud

		2.4. Who is this for?

		2.5. What is this book not?

		2.6. How write book?

		2.6.1. When write book?

		2.6.2. Where?

		2.6.3. Hey now.

		2.7. A note on FOSS

		3. Your journey

		3.1. Why you should self-host

		3.2. Why you should not self-host

		4. Practical examples

		4.1. Criminal chickens

		4.2. Photo search by location

		4.3. Surprises

		4.3.1. Good surprises

		4.3.2. Bad surprises

		4.3.3. Absorb them all

		5. Plan

		5.1. Budget

		5.2. Resources

		5.3. Schedule

		5.4. Transition

		5.5. Sysadmin mindset

		6. System design

		6.1. Service stack

		6.2. Digital security

		6.2.1. Categorize your data

		6.2.2. WAN access

		6.2.3. Threat model

		6.2.4. Example: WAN access

		6.2.5. VPN

		6.2.6. Full-disk encryption

		6.2.7. More tips

		6.3. Filesystem

		6.4. Operating system

		6.4.1. Customizations

		6.5. Contained services

		6.6. Reverse Proxy

		6.6.1. Traefik architecture

		7. Implementation

		7.1. Service plan

		7.1.1. Choose services

		7.1.2. Map services to resources

		7.2. Prepare hardware

		7.2.1. Server

		7.2.2. Admin computer

		7.2.3. Test devices

		7.2.4. Hard drives

		7.2.5. Networking

		7.2.6. Electricity

		7.2.7. Physical security

		7.3. OS install

		7.3.1. ZFS setup

		7.4. Server maintenance

		7.4.1. Hardware failure

		7.4.2. Software updates

		7.4.3. Monitoring

		7.4.4. Backups

		8. mario

		8.1. mario philosophy

		8.2. SSH setup

		8.3. Provision server

		8.4. Server domain name

		8.4.1. Public DNS

		8.4.2. Dynamic DNS

		8.4.3. Internal DNS

		8.5. Start services

		8.5.1. Start reverse proxy

		8.5.2. Start other services

		8.6. Encryption certificates

		8.7. Tiny test service

		9. Services

		9.1. Nextcloud: file sync and share

		9.1.1. Quick start

		9.1.2. Maintenance notes

		9.1.3. Issues

		9.2. Jellyfin: stream audio and video

		9.2.1. Quick start

		9.2.2. Maintenance notes

		9.2.3. Issues

		9.2.4. Manage Jellyfin media with Nextcloud

		9.3. Wallabag: save and read articles

		9.3.1. Quick start

		9.3.2. Maintenance notes

		9.3.3. Issues

		9.4. Watchtower: service updater

		9.4.1. Quick start

		9.4.2. Maintenance notes

		9.4.3. Issues

		9.5. Scratch: visual programming

		9.5.1. Quick start

		9.5.2. Maintenance notes

		10. What’s next?

		10.1. Learn more

		10.2. Use a GPU

		10.3. AI

		10.4. Pi-hole

		10.5. Single sign-on

		10.6. Enforce SSH public key auth

		10.7. Allow WAN access

		10.8. More about Nextcloud

		10.8.1. Basic install

		10.8.2. Object storage

		10.8.3. Security

		10.8.4. Detailed setup

		10.8.5. More maintenance tips

		10.8.6. Performance

		10.8.7. Customization

		10.8.8. Full text search

		10.8.9. Mobile

		10.8.10. Nextcloud vs. ownCloud

		10.8.11. Nextcloud Office

		10.8.12. Various issues

		10.8.13. End-to-End Encryption

		10.8.14. AIO installer

		11. More resources

		11.1. Support

		11.2. Alternatives to mario

		12. Discussion topics

		13. Exercises

		Afterword

		Acknowledgments

		Glossary

		Cross references

		Figures

		Tables

		Sidebars

		Code snippets

		Front Cover

		Table of Contents

		Start of Content

EPUB/img/watchtower.png

EPUB/img/nextcloud.png
% Favorites
+2 shares
W Tags

B External storage

W Deleted files

@ 37.3MBused

£ Files settings

B Allfiles + New

Welcome to Nextcloud! § =

Here you can add a description or any other info relevant for the folder. It will show as a
"Readme.md" and in the web interface also embedded nicely up at the top.

Birdie jpg 5 Nextcloud intro.mp4 H
Recently edited Recently edited

Name &
. Documents o
B3 vovies
B3 music
BB rrows P
. Templates 2 -
. Nextcloud intro.mp4 o
Nextcloud Manual.pdf a -
B nextctoudong -
" Readmemd A

Templates credits.md

Recently edited

size

1.1MB

0KB

Pending

5.4MB

102MB

3.8MB

158 MB

49KB

<1KB

Modified

3 days ago

3 days ago

3 days ago

3 days ago

3 days ago

3 days ago

3 days ago

3 days ago

3 days ago

EPUB/img/jellyfin.png
Big Buck Bunny

2008 10m % 65 Endsat

:32 PM

Video 480p THEORA SDR

Audio VORBIS - Stereo

Follow a day of the life of Big Buck Bunny when he meets three bullying rodents: Frank, Rinky, and Gamera. The
rodents amuse themselves by harassing helpless creatures by throwing fruits, nuts and rocks at them. After the

deaths of two of Bunny’s favorite butterflies, and an offensive attack on Bunny himself, Bunny sets aside his
gentle nature and orchestrates a complex plan for revenge.

Tags: squirrel, bunny, repayment, mobbing, revenge, open source, conejo, short film

IMDb, TheMovieDb, Trakt

Genres Animation, Comedy, Family

Director sacha Goedegebure

EPUB/img/scratch.png
Tutorials

v #Edts | Scratch Project

0 settings + @

= Code | ¢ Costumes | g Sounds

@ woiion
Moton

N o

Looks.
Sound
=
Cantrol
Sensing

Operators

Variables

sprte | sprite1 e 0ty

W2
show | @ | D Size 100 Direction 0

o) (O

OO0

Backpack

EPUB/img/inside-chassis.jpg

EPUB/img/seagl-crew.jpg
&] National Novel
Writing Month

DESMOND LUSTER SR
TERMOMTE FLETCHER.
TERAGC REO. CESAR.
POWELL RODNEY
SINGLETON. YWETTE:
ALTMRREA CROSS
SR. DAVID YEARRY
e

ANTDMG *
FORBE"

ELITAN TACESON
ADAMS. KADIEME-
HODGE. RONALD
HENPERSON
EARNGST SATERWHIG
DENZELL CURNELL
O SHANE EvANS
BROWN ERIC TVROME
LEUNDEY KEVNANG
Lewts REDERICK R MILER
T TONES. TONY TERRELL ROBINSOM
AL BROWN. TREOW “TREE"
ITAMEL MCCALL. MATTHEW

BERNARD Doss. EDDIE
DA, LENNE FLERMING
LINCOLN PRICE RoBERT
BALTIMORE DARIN
HVTCHIVS ROBALD SAE
ED MATIHEW WALRER
CHRISTOPRER HASow
MCCRAY ELDRM LaRen
SMART. TERLANCE
MOWLEY v" QUISE
JONES. LAVAL HALL
CALHOUN. MICRAEL D.
CROOM LAVON KING.
JDWERS. THOMAS DE)
FRANK. RWODES. LATRONI
CANTON WAYNE S

ﬂ"m [RONE DAvIS
A LLOYD STARNS.

EPUB/img/puppy.jpg

EPUB/img/racked-server.jpg

EPUB/img/traefik-architecture.png
TrAEfiK ARCHITECTURE AT A GLANCE

R e T —

TWEAK THE
REQUEST / RESPONSE
)
ROUTERS /

CoNNECT REQUESTS TO SERVICES ‘
Y
| / |
i’ SERVICES
\

INCOMING REQUEST

ENTRYPOINTS

WHAT AM | LisTENING To?
PorTs, ...

HOST, PATH, HEADERS, ...

RuULEs 7 MIDDLEWARES
5 - B -/
ey
WHERE IS THE FEATURE?

WHAT DOES THE REQUEST LOOK LIKE?
SERVERS, LOAD BALANCING, ...

CAILS THE MATCHING SERVER

P

EPUB/img/bread-server.png

EPUB/img/YT-censor.png
Adam Monsen, your content violated YouTube’s Community Guidelines and
has been removed

YouTube <no-reply@youtube.com> Sun, Mar 3, 7:30 AM * LN
tome ¥

@ YouTube

Hi Adam Monsen,

Our team has reviewed your content, and, unfortunately, we think it
violates our spam, deceptive practices and scams policy. We've
removed the following content from YouTube:

Video: ChickenCam 2019-03-03 06:42:28

1LY
We know that this might be disappointing, but it's important to us

that Yni1Tiithe ic a cafe nlace far all If content hreake niir rillee we

EPUB/img/bird-on-server.jpg
- e i sy a3 >

